Home  /  Cells  /  Vol: 7 Núm: 6 Par: June (2018)  /  Article
ARTICLE
TITLE

Human-Induced Pluripotent Stem Cell Technology and Cardiomyocyte Generation: Progress and Clinical Applications

SUMMARY

Human-induced pluripotent stem cells (hiPSCs) are reprogrammed cells that have hallmarks similar to embryonic stem cells including the capacity of self-renewal and differentiation into cardiac myocytes. The improvements in reprogramming and differentiating methods achieved in the past 10 years widened the use of hiPSCs, especially in cardiac research. hiPSC-derived cardiac myocytes (CMs) recapitulate phenotypic differences caused by genetic variations, making them attractive human disease models and useful tools for drug discovery and toxicology testing. In addition, hiPSCs can be used as sources of cells for cardiac regeneration in animal models. Here, we review the advances in the genetic and epigenetic control of cardiomyogenesis that underlies the significant improvement of the induced reprogramming of somatic cells to CMs; the methods used to improve scalability of throughput assays for functional screening and drug testing in vitro; the phenotypic characteristics of hiPSCs-derived CMs and their ability to rescue injured CMs through paracrine effects; we also cover the novel approaches in tissue engineering for hiPSC-derived cardiac tissue generation, and finally, their immunological features and the potential use in biomedical applications.

 Articles related

Sarka Jelinkova, Petr Fojtik, Aneta Kohutova, Aleksandra Vilotic, Lenka Marková, Martin Pesl, Tereza Jurakova, Miriama Kruta, Jan Vrbsky, Renata Gaillyova, Iveta Valášková, Ivan Frák, Alain Lacampagne, Giancarlo Forte, Petr Dvorak, Albano C. Meli and Vladimir Rotrekl    

Recent data on Duchenne muscular dystrophy (DMD) show myocyte progenitor’s involvement in the disease pathology often leading to the DMD patient’s death. The molecular mechanism underlying stem cell impairment in DMD has not been described. W... see more

Revista: Cells

Natalia Jiménez-Moreno, Petros Stathakos, Maeve A. Caldwell and Jon D. Lane    

Human induced pluripotent stem cells (hiPSCs) are invaluable tools for research into the causes of diverse human diseases, and have enormous potential in the emerging field of regenerative medicine. Our ability to reprogramme patient cells to become hiPS... see more

Revista: Cells

Nicholas Brookhouser, Sreedevi Raman, Christopher Potts and David. A. Brafman    

In the decade since Yamanaka and colleagues described methods to reprogram somatic cells into a pluripotent state, human induced pluripotent stem cells (hiPSCs) have demonstrated tremendous promise in numerous disease modeling, drug discovery, and regene... see more

Revista: Cells

Sergey A. Sinenko, Elena V. Skvortsova, Mikhail A. Liskovykh, Sergey V. Ponomartsev, Andrey A. Kuzmin, Aleksandr A. Khudiakov, Anna B. Malashicheva, Natalia Alenina, Vladimir Larionov, Natalay Kouprina and Alexey N. Tomilin    

AlphoidtetO-type human artificial chromosome (HAC) has been recently synthetized as a novel class of gene delivery vectors for induced pluripotent stem cell (iPSC)-based tissue replacement therapeutic approach. This HAC vector was designed to deliver cop... see more

Revista: Cells

Stepanka Skalova, Tereza Svadlakova, Wasay Mohiuddin Shaikh Qureshi, Kapil Dev and Jaroslav Mokry    

Stem cells are unique pools of cells that are crucial for embryonic development and maintenance of adult tissue homeostasis. The landmark Nobel Prize winning research by Yamanaka and colleagues to induce pluripotency in somatic cells has reshaped the fie... see more