Home  /  Brain Sciences  /  Vol: 8 Núm: 1 Par: January (2018)  /  Article
ARTICLE
TITLE

Adaptive Deep Brain Stimulation (aDBS) for Tourette Syndrome

SUMMARY

Deep brain stimulation (DBS) has emerged as a novel therapy for the treatment of several movement and neuropsychiatric disorders, and may also be suitable for the treatment of Tourette syndrome (TS). The main DBS targets used to date in patients with TS are located within the basal ganglia-thalamo-cortical circuit involved in the pathophysiology of this syndrome. They include the ventralis oralis/centromedian-parafascicular (Vo/CM-Pf) nucleus of the thalamus and the nucleus accumbens. Current DBS treatments deliver continuous electrical stimulation and are not designed to adapt to the patient’s symptoms, thereby contributing to unwanted side effects. Moreover, continuous DBS can lead to rapid battery depletion, which necessitates frequent battery replacement surgeries. Adaptive deep brain stimulation (aDBS), which is controlled based on neurophysiological biomarkers, is considered one of the most promising approaches to optimize clinical benefits and to limit the side effects of DBS. aDBS consists of a closed-loop system designed to measure and analyse a control variable reflecting the patient’s clinical condition and to modify on-line stimulation settings to improve treatment efficacy. Local field potentials (LFPs), which are sums of pre- and post-synaptic activity arising from large neuronal populations, directly recorded from electrodes implanted for DBS can theoretically represent a reliable correlate of clinical status in patients with TS. The well-established LFP-clinical correlations in patients with Parkinson’s disease reported in the last few years provide the rationale for developing and implementing new aDBS devices whose efficacies are under evaluation in humans. Only a few studies have investigated LFP activity recorded from DBS target structures and the relationship of this activity to clinical symptoms in TS. Here, we review the available literature supporting the feasibility of an LFP-based aDBS approach in patients with TS. In addition, to increase such knowledge, we report explorative findings regarding LFP data recently acquired and analysed in patients with TS after DBS electrode implantation at rest, during voluntary and involuntary movements (tics), and during ongoing DBS. Data available up to now suggest that patients with TS have oscillatory patterns specifically associated with the part of the brain they are recorded from, and thereby with clinical manifestations. The Vo/CM-Pf nucleus of the thalamus is involved in movement execution and the pathophysiology of TS. Moreover, the oscillatory patterns in TS are specifically modulated by DBS treatment, as reflected by improvements in TS symptoms. These findings suggest that LFPs recorded from DBS targets may be used to control new aDBS devices capable of adaptive stimulation responsive to the symptoms of TS.

 Articles related

Amal Fadhil Mohammed,Saeed M. Hashim,Inas Kadhim Jebur    

The new coronavirus disease (2019) has spread quickly as an acute respiratory distress syndrome (ARDS) among millions of individuals worldwide. Furthermore, the number of COVID-19 checking obtainable in hospitals is very limited as compared to the rising... see more


Yuliia RYBINSKA,Maryna ANTONIVSKA,Olha SERBOVA,Maryna MYKOLAENKO,Olha FROLOVA,Olena KOLPAKCHY    

The beginning of a full-scale inv?sion of Russi?n troops into Ukraine became a traumatic event of a powerful force for all the population of Ukraine. In the f?ce of cruel milit?ry ?ggression, the need to develop a comprehensive ?pproach to m?intaining, p... see more


Winna Soleha,Febriana Catur Iswanti    

Asthma is a major health problem and one of the leading causes of death in the world. The prevalence of asthma in Indonesia is high, with a recurrence >50%. Allergic sensitization in asthma is mainly caused by house dust mite (HDM) allergens, both fro... see more


V. S. Bityutsky, S. I. Tsekhmistrenko, ?. S. Tsekhmistrenko, N. O. Tymoshok, M. Y. Spivak    

The article is devoted to the mechanisms of regulation of redox processes in cells, a review of the Keap1 / Nrf2 / ARE redox-sensitive signaling system as a fundamental pathway that plays a key role in maintaining cellular redox homeostasis under stressf... see more


Y. Kulbachko, O. Didur, N. Khromykh, A. Pokhylenko, T. Lykholat, B. Levchenko    

The study of morpho-ecological organization of oribatid mite communities (Acariformes, Oribatida) inhabiting forest litter of recultivated areas in steppe zone conditions of Ukraine was performed. The role of the forest and forest floor litter in optimiz... see more