ARTICLE
TITLE

Soil structure as a significant indirect factor affecting crop yields

SUMMARY

Article Details: Received: 2021-01-29 | Accepted: 2021-02-22 | Available online: 2021-06-30 https://doi.org/10.15414/afz.2021.24.02.129-136 The use of organic amendments for improving soil properties including soil structure is crucial for sustainable soil management. In this study, two organic materials (1. compost, and 2. farmyard manure) both at a rate of 44 t ha-1 as well as their combination were applied to a Hortic Calcaric Fluvisol (Slovakia) to evaluate the soil physical properties to test the potential of these amendments for soil amelioration under gardening conditions. The results showed that the addition of organic amendments did not have any significant effects on bulk density, total porosity, soil moisture and aeration, but their application influenced the total contents of dry-sieved aggregates as well as water-stable aggregates. The highest content of dry-sieved macro-aggregates was in compost > farmyard manure + compost > farmyard manure > control (unfertilized). The stability of aggregates was higher in compost and farmyard manure + compost treatments than in farmyard manure compared to control. Also, better soil structure stability evaluated by vulnerability coefficient was in farmyard manure + compost and compost than in farmyard manure. The highest contents of soil organic carbon and humic substances were found in the farmyard manure + compost treatment and then compost > farmyard manure > control. In compost, farmyard manure and farmyard manure + compost treatments, cabbage yield increased by 52, 22 and 72%, respectively compared to control treatment. Cabbage yields linear also increased as a result of increasing of soil organic carbon and humic substances.Keywords: aggregate stability, coefficient vulnerability, cabbage yield, compost, farmyard manure, soil organic matterReferencesAre, K. S. et al. (2017). Improving physical properties of degraded soil: Potential of poultry manure and biochar. Agriculture and Natural Resources, 51, 454–462. https://doi.org/10.1016/j.anres.2018.03.009Belmonte, S. A. et al. (2018). Effect of Long-Term Soil Management on the Mutual Interaction Among Soil Organic Matter, Microbial Activity and Aggregate Stability in a Vineyard. Pedosphere, 28(2), 288–298. https://doi.org/10.1016/S1002-0160(18)60015-3Bronick, C. J. & Lal, R. (2005). Soil structure and management: a review. Geoderma, 124, 3–22. https://doi.org/10.1016/j.geoderma.2004.03.005Colombi, T. et al. (2017). Artificial macropores attract crop roots and enhance plant productivity on compacted soils. Science Total Environment, 574, 1283–1293. https://doi.org/10.1016/j.scitotenv.2016.07.194Dörner, J. et al. (2010). The role of soil structure on the pore functionality of an Ultisol. Journal of Soil Science and Plant Nutrition, 10, 495–508. http://dx.doi.org/10.4067/S0718-95162010000200009Fulajtár, E. (2006). Physical Properties of Soil. VÚPOP, Bratislava. In Slovak.Gosling, P. et al. (2013). What are the primary factors controlling the light fraction and particulate soil organic matter content of agricultural soils? Biology and Fertility of Soils, 49, 1001–1014.Harris, R. F. G. et al. (1966). Dynamics of soil aggregation. Advantages in Agronomy, 18, 107–169.Hrivnáková, K. et al. (2011). The uniform methods of soil analysis. VÚPOP, Bratislava. In Slovak.Idowu, O. J. (2003). Relationships between aggregate stability and selected soil properties in humid tropical environment. Communications in soil science and plant analysis, 34(5–6), 695–708. https://doi.org/10.1081/CSS-120018969Iwai, Ch. B. et al. (2019). Vermicompost as soil amendment for sustainable land and environment in Thailand. In Rakshit, A. et al. (eds.) Soil amendments for sustainability, challenges and perspectives. CRP Press, Taylor & Francis Group (pp. 321–348).Kay, B. D. et al. (2006). Optimum versus non-limiting water contents for root growth, biomass accumulation, gas Exchange and the rate of development of maize (Zea mays L.). Soil & Tillage Research, 88, 42–54. https://doi.org/10.1016/j.still.2005.04.005Lal, R. & Shukla, M. K. (2004). Principles of soil physics. Marcel Dekker, New York. https://doi.org/10.1111/j.1365-2389.2005.0756c.xLoginow, W. et al. (1987). Fractionation of organic carbon based on susceptibility to oxidation. Polish Journal of Soil Science, 20, 47–52.McKenzie, B. M. et al. (2011). Soil physical quality. In Glinski, J. et al. (eds.) Encyclopedia of Agrophysics. Springer Science, Coppenhagen (pp. 770–777).Nayak, S. & Mishra, C. S. K. (2019). Nutrient enrichment of mine spoil with suitable organic and bio-fertilizer amendments as a sustainable technology for eco-restoration. In Rakshit, A. et al. (eds.) Soil amendments for sustainability, challenges and perspectives. CRP Press, Taylor & Francis Group (pp. 349–361).Oliveira, D. et al. (2015). Physical soil quality under different management systems and swine slurry application. Agriambi, 19, 280–285. https://doi.org/10.1590/1807-1929/agriambi.v19n3p280-285Onweremadu, E. U. et al. (2007). Carbon and nitrogen distribution in water-stable aggregates under two tillage techniques in Fluvisols of Owerriarea, southeastern Nigeria. Soil & Tillage Research, 97, 195–206. https://doi.org/10.1016/j.still.2007.09.011Polláková, N. & Šimanský, V. (2015). Physical properties of Urban soil in the campus of Slovak University of Agriculture Nitra. Acta fytotechnica et zootechnica, 18(2), 30–35. https://doi.org/10.15414/afz.2015.18.02.30-35Polláková, N. & Šimanský, V. (2015a) Selected soil chemical properties in the campus of Slovak University of Agriculture in Nitra. Acta fytotechnica et zootechnica, 18(3), 66–70. https://doi.org/0.15414/afz.2015.18.03.66-70Riffaldi, R. et al. (1998). Adsorption on soil of dissolved organic carbon from farmyard manure. Agriculture. Ecosystems and Environment, 69, 113–119. https://doi.org/10.1016/S0167-8809(98)00097-8Shen, H. et al. (2001). Effect of fertilization on oxidizible carbon, microbial biomass carbon and mineralizable carbon under different agroecosystems. Communications in soil science and plant analysis, 32(2), 1575–1588. https://doi.org/10.1081/CSS-100104214Šimanský, V. et al. (2013). The effect of organic matter on aggregation under different soil management practices in a vineyard in an extremely humid year. Catena, 101, 108–113. https://doi.org/10.1016/j.catena.2012.10.011Šimanský, V. & Bajcan, D. (2014). The stability of soil aggregates and their ability of carbon sequestration. Soil & Water Research, 9(3), 111–118. https://doi.org/10.17221/106/2013-SWRŠimanský, V. et al. (2018). Response of soil organic matter and water-stable aggregates to different biochar treatments including nitrogen fertilization. Journal of Hydrology and Hydromechanics, 66(4), 429–436. https://doi.org/10.2478/johh-2018-0033Šimanský, V. et al. (2017). Guide for soil science. Slovak University of Agriculture, Nitra. In Slovak.Špánik, F. et al. (2002). Agroclimatic and phenological characteristics of the town of Nitra (1999–2000). Slovak University of Agriculture, Nitra. In Slovak.Váchalová, R. et al. (2016). Primary soil organic matter and humus, two components of soil organic matter. Slovak University of Agriculture, Nitra. In Czech.Valla, M. et al. (2000). Vulnerability of aggregates separated from selected Anthrosols developed on reclaimed dumpsites. Rostlinná výroba, 46, 563–568. https://doi.org/10.17221/4376-PSEVanek, V. et al. (2013). Nutrition of field and garden crops. Profi Press, Nitra. In Czech and Slovak.Zaujec, A. & Šimanský, V. (2006). Influence of biostimulators of plant residue decomposition on soil structure and soil organic matter. Slovak University of Agriculture, Nitra, In Slovak.

 Articles related

Adeniyi Adebowale Soretire,Nurudeen Olatunbosun Adeyemi,Mufutau Olaoye Atayese,Adebanke Ayooluwa Olubode,Ademolaa Adewunmi    

AArticle Details: Received: 2020-04-30 | Accepted: 2020-06-16 | Available online: 2020-12-31https://doi.org/10.15414/afz.2020.23.04.182-191 Arbuscular mycorrhizal fungi (AMF) play an important role in nutrition of most plants as well improving soil ... see more


Zuzana Krumpálová,Lucia Štipcáková,Kornélia Petrovicová,Peter Luptácik    

Article Details: Received: 2020-03-24 | Accepted: 2020-04-03 | Available online: 2020-06-30https://doi.org/10.15414/afz.2020.23.02.94-101The research of the influence of crops on the species diversity of oribatid mites in garden within the small farmer c... see more


Dušan Šrank,Vladimír Šimanský    

Article Details: Received: 2020-04-13 | Accepted: 2020-05-18 | Available online: 2020-09-30 https://doi.org/10.15414/afz.2020.23.03.117-124The effort to achieve the sustainable farming system in arable soil led to the intensive search for a new solution ... see more


Danka Kotorová,Ladislav Kovác,Jana Jakubová,Pavol Balla    

Article Details: Received: 2018-05-31    |    Accepted: 2018-07-09    |    Available online: 2018-09-31https://doi.org/10.15414/afz.2018.21.03.100-107Between 2006 and 2015 years the effect of di... see more


Esther Abosede Ewetola,Yetunde Bunmi Oyeyiola,Folasade Mary Owoade,,Mercy Foluso Farotimi    

Article Details: Received: 2019-01-15 | Accepted: 2019-06-03 | Available online: 2019-06-30https://doi.org/10.15414/afz.2019.22.02.26-33Soil is the main reservoir of water and nutrients, and thus controls the availability of most essential plant nutrient... see more