ARTICLE
TITLE

Assessment of genetic drift and migration in six cattle breeds

SUMMARY

Submitted 2020-06-22 | Accepted 2020-07-25 | Available 2020-12-01https://doi.org/10.15414/afz.2020.23.mi-fpap.46-51Slovak Spotted cattle represents an endangered breed with cultural importance in Slovakia. The study was based on the panel of 34,604 SNPs that were used for genotyping of 451 individuals. We used a combination of two arrays Illumina BovineSNP50v2 BeadChip and ICBF International Dairy and Beef v3, for estimation of gene flow and genetic drift. Based on the admixture results, a gene flow network across the analysed breeds was created. Our result showed that the Jersey population was involved in the grading-up of the analysed breeds. Analysed breeds were not confirmed to influence genetic make-up of Jersey. In addition, the phylogenetic analysis of the six cattle breeds revealed that Jersey is separated from the others. In contrast, the other breeds showed a close relationship with each other according to the maximum-likelihood tree. Migration edges reached weight values below 0.2, apart the one observed among the Ayrshire/Swiss Simmental breeds into Jersey (0.4), reflecting that the donor population has made a significant contribution to the recipient population.Keywords: Bayesian Population Structure Analysis, genetic drift, gene flow, Slovak Spotted, TreeMixReferencesASSOCIATION OF SLOVAK SPOTTED CATTLE BREEDERS – COOPERATIVE (2020). HISTORY OF BREED ORIGIN, Year 2020. ASSOCIATION OF SLOVAK SPOTTED CATTLE BREEDERS – COOPERATIVE, Retrieved Jun 11, 2020 from https://www.simmental.sk/o-plemene/historia-vzniku-plemena.htmlBanks, S.C., Cary, G.J., Smith, A.L., Davies, I.D., Driscoll, D.A. Gill, A.M., Lindenmayer, D.B., Peakall, R. (2013). How does ecological disturbance influence genetic diversity? Trends in Ecology & Evolution, 28(11), 670–679. https://doi.org/10.1016/j.tree.2013.08.005Bulla, J., Polák, P., Chrenek, P. (2013). Pinzgauer cattle in Slovakia. Slovak J. Anim. Sci.,46,151–154Chang, Ch.C., Chow, C.C., Tellier, L.C.A.M., Vattikuti, S., Purcell, S.M., Lee J.J. (2015). Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience, 4,7. https://doi.org/10.1186/s13742-015-0047-8Chrenek, P., Kubovicová, E., Makarevich, A. (2017). CURRENT SITUATION IN THE GENE BANK OF ANIMAL GENETIC RESOURCES IN SLOVAKIA: A review. Slovak J. Anim. Sci., 50, 2017 (4): 135–138.Corander, J. and Tang, J. (2007). Bayesian analysis of population structure based on linked molecular information. Math Biosci, 205,19 –31. http://dx.doi.org/10.1016/j.mbs.2006.09.015.Falconer, D. S. and Mackay, T. F. C. (1996). Introduction to Quantitative Genetics, Ed 4. Longmans Green, Harlow, Essex, UKFAO (2003). The State of Farm Animal Genetic Resources in the Slovak Republic. National Consultative Committee for the Use and Conservation of Farm Animal Genetic Resources. 29. Nitra. FAO. http://www.fao.org/tempref/docrep/fao/010/a1250e/annexes/CountryReports/SlovakRepublic.pdfGautier, M., Faraut, T., Moazami-Goudarzi, K., Navratil, V., Foglio, M., Grohs, C., Boland, C., Garnier J-G., Boichard, D., Lathrop, G.M., Gut, I.G., Eggen, A. (2007). Genetic and haplotypic structure in 14 European and African cattle breeds, Genetics, 177,2, 1059–1070. https://doi.org/10.1534/genetics.107.075804Groeneveld, L.F., Lenstra, J.A., Eding, H., Toro, M.A., Scherf, B., Pilling, D., Negrini, R., Finlay, E.K., Jianlin, H., Groeneveld, E., Weigend, S. (2010). Genetic diversity in farm animals – a review. Anim. Genet., 41  (Suppl.1),6–31. https://doi.org/10.1111/j.1365-2052.2010.02038.xJemaa, S.B., Boussaha, M., Mehdi, M.B., Lee, J.H., Lee, S.H. (2015). Genome-wide insights into population structure and genetic history of Tunisian local cattle using the Illumina bovinesnp50 bead-chip. BMC genomics, 16(1), 677.Karimi, K., Strucken, E.M., Moghaddar, N., Ferdosi, M.H., Esmailizadeh, A., Gondro, C. (2016). Local and global patterns of admixture and population structure in Iranian native cattle. BMC Genet 17, 108. https://doi.org/10.1186/s12863-016-0416-zKasarda, R., Moravcíková, N., Trakovická, A., Mészáros, G., Kadlecík, O. (2015). GENOME-WIDE SELECTION SIGNATURES IN PINZGAU CATTLE. Potravinarstvo, 9 (1), 268–274. https://doi.org/10.5219/478Kasprzak-Filipek, K. Sawicka-Zugaj, W., Litwinczuk, Z., Chabuz, W., Šveistiene, R., Bulla, J. (2019). Assessment of the genetic structure of Central European cattle breeds based on functional gene polymorphism, Global Ecology and Conservation, 17, e00525, ISSN 2351-9894Kijas, J.W., Townley, D., Dalrymple, B.P., Heaton, M.P., Maddox, J.F., McGrath, A., Wilson, P., Ingersoll, R.G., McCulloch, R., McWilliam, S., Tang, D., McEwan,J., Cockett, N., Oddy, V.H., Nicholas, F.W., Raadsma, H. (2009). A genome wide survey of SNP variation reveals the genetic structure of sheep breeds. PLOS ONE, 4. https://doi.org/10.1371/journal.pone.0004668Kukucková, V., Moravcíková, N., Curik, I., Simcic, M., Mészáros, G., Kasarda, R. (2018). Genetic diversity of local cattle. Acta biochimica Polonica,65(3). https://doi.org/10.18388/abp.2017_2347Kukucková, V., Moravcíková, N., Ferencakovic, M., Simcic, M., Mészáros, G., Sölkner, J., Trakovická, A., Kadlecík, O., Curik, I., Kasarda, R. (2017). Genomic characterisation of Pinzgau cattle: genetic conservation and breeding perspectives. Conserv. Genet.18, 893–910. https://doi.org/10.1007/s10592-017-0935-9Masel, J. (2011). Genetic drift. Current Biology. Cell Press. 21 (20): R837-8. https://doi.org/10.1016/j.cub.2011.08.007McKay, S.D., Schnabel, R.D., Murdoch, B.M., Matukumalli, L.K., Aerts, J., Coppieters, W., Crews, D., Neto, E.D., Gill, C.A., Gao, Ch., Mannen, Ch., Wang, Z., Van Tassell, C.P., Williams, J.L., Taylor, J.F., Moore, S.S. (2008). An assessment of population structure in eight breeds of cattle using a whole genome SNP panel. BMC Genet., 9, 37. https://doi.org/10.1186/1471-2156-9-37McTavish, E.J., Decker, J.E., Schnabel, R.D., Taylor, J.F., Hillis, D.M. (2013). New world cattle show ancestry from multiple independent domestication events, Proc Natl Acad Sci U S A, 110(15):1398–1406. https://doi.org/10.1073/pnas.1303367110Merilä, J. (2014). Lakes and ponds as model systems to study parallelevolution. J. Limnol.,73,33–45.Moravcíková, N., Kadlecík, O., Trakovická, A., Kasarda, R. (2018) Autozygosity island resulting from artificial selection in Slovak spotted cattle. Agriculture & Forestry, 64(4): 21-28.Orozco-terWengel, P., Barbato, M., Nicolazzi, E., Biscarini, F., Milanesi, M., Davies, W., Williams, D., Stella, A., Ajmone-Marsan, P., Bruford, M.W. (2015). Revisiting demographic processes in cattle with genome-wide population genetic analysis. Front Genet. 6,191. https://doi.org/10.3389/fgene.2015.00191Pickrell, J.K. and Pritchard, J.K. (2012). Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet, 8: e1002967. https://doi.org/10.1371/journal.pgen.1002967R CORE TEAM. (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computing. [Internet]. Vienna, Austria; 2013. [cited 2020 May 8] Available from: http://www.R-project.org/.Rochus, C. M. and Johansson, A. M. (2017). Estimation of genetic diversity in Gute sheep: pedigree and microsatellite analyses of an ancient Swedish breed. Hereditas, 154,4. https://doi.org/10.1186/s41065-017-0026-4Sexton, J.P., Hangartner, S.B., Hoffmann, A.A. (2014). Genetic isolation by environment or distance: which pattern of gene flow is most common? Evolution 68, 1–15. https://doi.org/10.1111/evo.12258Socol, C.T., Iacob, L., Mihalca, I., Criste, F.L. (2015). Molecular and population genetics tools for farm animal genetic resources conservation: brief overview. Anim. Sci. Biotechnol., 48, 95–102.Troy, C. S., MacHugh, D.E., Bailey, J.F., Magee, D.A., Loftus, R.T., Cunningham, P., Chamberlain, A.T., Sykes, B.C., Bradley, D.G. et al (2001). Genetic evidence for Near-Eastern origins of European cattle. Nature, 410,1088–1109Upadhyay M., Bortoluzzi C., Barbato M., Marsan P.A., Colli L., Ginja C., Sonstegard, T.S., Bosse, M., Lenstra, J.A., Groenen, M.A.M., Crooijmans, R.P.M.A. et al. (2019). Deciphering the patterns of genetic admixture and diversity in southern European cattle using Genome-wide SNPs. Evol Appl. John Wiley & Sons, Ltd (10.1111); 2019.Wright, S. (1929). The evolution of dominance. Am. Nat. 63, 556–561.  

 Articles related

Lubos Vostry,Hana Vydorvá-Vostrá,Barbora Hofmanová,Nina Moravcíková,Zdenka Veselá,Ivan Majzlík    

Received: 2018-05-07 | Accepted: 2018-05-14 | Available online: 2018-11-26https://doi.org/10.15414/afz.2018.21.04.190-193The aim of the present study was to analyse the genetic diversity of the endangered horse breeds kept in the Czech Republic. A set of... see more


Radoslav Zidek    

Phytoestrogens can induce biological responses in vertebrates by mimicking or modulating the action or production of endogenous hormones, and because of their structural similarity with estradiol they have the ability to cause estrogenic or anti-estrogen... see more


Marek Kolencík,Vladimir Simansky    

Received: 2015-07-22   |   Accepted: 2016-03-11   |   Available online: 2016-05-30dx.doi.org/10.15414/afz.2016.19.02.68-73This work introduces concepts of methodological approach (theoretical investigation) in term... see more


Mária Mészárosová,Gábor Mészáros,Nina Moravcíková,Radovan Kasarda    

Article Details: Received: 2021-03-25 | Accepted: 2021-04-16 | Available online: 2021-06-30https://doi.org/10.15414/afz.2021.24.02.161-166The use of single nucleotide polymorphism (SNP) data had become commonplace in animal breeding activities and manage... see more


Olena Gaviley,Svitlana Pankova,Oleg Katerynych    

Article Details: Received: 2020-08-20 | Accepted: 2021-01-19 | Available online: 2021-06-30https://doi.org/10.15414/afz.2021.24.02.147-154Genetically modified (GM) maize and traditional maize were tested experimentally to determine their effect on chicke... see more