ARTICLE
TITLE

Copper-and-Nitrogen-Codoped Zirconium Titanate (Cu-N-ZrTiO4) as a Photocatalyst for Photo-Degradation of Methylene Blue under Visible-Light Irradiation

SUMMARY

Synthesis and characterization of copper-and-nitrogen-codoped zirconium titanate (Cu-N-ZrTiO4) as a photocatalyst for the degradation of methylene blue (MB) have been conducted. The main purpose of this research was to investigate the co-doping effect of copper and nitrogen dopants in ZrTiO4 as a photocatalyst for the photodegradation of MB. Titanium-(IV) tetraisopropoxide (TTIP) was dissolved into ethanol and mixed with aqueous zirconia (ZrO2) suspension containing 10% nitrogen (N) (w/w to Ti) from urea and various amount of copper as dopants. The calcination was performed at temperatures of 500, 700, and 900 °C. The composites were characterized using Fourier transform infrared spectrophotometer (FTIR), X-ray diffractometer (XRD), scanning electron microscopy with energy dispersive X-ray (SEM-EDX) mapping, and specular reflectance UV-Visible spectrophotometer (SRUV-Vis). The degradation of 4 mg L-1 MB solution was conducted for various irradiation times. Characterization shows a significant decrease of the ZrTiO4 band gap from 3.09 to 2.65 eV, which was given by the composite with the addition of 4% Cu and calcination of 900 °C. Cu-N-ZrTiO4 composite can degrade MB solution up to 83% after 120 min under the irradiation of visible light.

 Articles related

Lia Destiarti,Risya Sasri    

The use of TiO2 in the slurry system for the photocatalytic process has disadvantages. It causes the resistance of UV transmission because it is cloudy and the difficulty for obtaining the catalyst at the end of the process. Therefore, an attempt to over... see more