ARTICLE
TITLE

The Influence of Agrochemicals on Macroinvertebrate Community Structure in Various Agricultural Rivers in Jember Regency

SUMMARY

The intensive use of agrochemicals in agricultural areas of Jember’s Regency presents a potential threat to the freshwater ecosystem’s community. The use of the benthic macroinvertebrates community may provide a key to monitor the extent of agrochemical impact to maintain valuable ecosystem services. Macroinvertebrates community structure and environmental factors were studied from September–December 2020 in Jember Regency by comparing three different types of agricultural rivers (organic, semi-organic, and conventional). Five community indices (taxa, individuals, Simpson dominancy index, Margalef species richness, and Shannon diversity index) were used to compare the macroinvertebrates community structure between sites. Using community composition and physicochemical properties (bare sediment, width, depth, water current, pH, conductivity, dissolved oxygen (DO), and temperature), we generated CCA triplot and correlogram plot to investigate the grouping and the correlation between variables and sites. Results on macroinvertebrate composition showed the importance of using sensitive taxa-group and community indices as an indicator of environmental changes. The family of Tipulidae, Naididae, Cysticidae, and Nereididae demonstrated relation to semi-organic agricultural rivers. Temperature and water current correlate to the presence of clean water indicator species such as Philorheitridae and Chironomidae, as observed in organic agricultural rivers. Conventional and semi-organic agricultural rivers were grouped and largely contributed by the 5 families including Ampullariidae, Pachychillidae, Baetidae, Enchytraidae, and Gomphidae. Correlogram plot suggests a complex interaction between macroinvertebrate community and environmental variables. It can be concluded that the intensive use of agrochemicals may lead to a detrimental change toward the diminished quality of freshwater community and environment. 

 Articles related