Home  /  Diversity  /  Vol: 10 Núm: 3 Par: Septemb (2018)  /  Article
ARTICLE
TITLE

Divergence, Convergence and Phenotypic Diversity of Neotropical Frugivorous Bats

SUMMARY

Knowing how adaptation shapes morphological evolution is fundamental to understanding the processes that promote biological diversity. However, there is a lack of empirical evidence on the effects of adaptive radiations on phenotypic diversity, which is related to processes that promote phenotypic divergence and convergence. We applied comparative methods to identify shifts in adaptive peaks and to detect divergence and convergence in skull morphology of frugivorous bats (Phyllostomidae: Stenodermatinae and Carollinae), an ecologically diverse group with strong association between skull morphology, feeding performance and diet that suggests adaptive diversification through morphological innovation. We found divergence and convergence for skull morphology. Fifteen peak shifts were found for jaws, which result in four convergent and four divergent regimes. For skull, nine peak shifts were detected that result in three convergent and three divergent regimes. Furthermore, convergence was significant and strong for skull morphology since distantly related organisms converged to the same adaptive optima. Results suggest that convergence indicates the effect of restriction on phenotypes to keep the advantages provided by the skull phenotype that played a central role in the evolution of strict frugivory in phyllostomids. We conclude that convergence has limited phenotypic diversity of functional traits related to feeding in phyllostomid frugivores.

 Articles related