ARTICLE
TITLE

Modeling of Molecular Mechanisms of Radiation Adaptive Response Formation

SUMMARY

The phenomenon of adaptive response is expressed in the increase of resistance of a biological object to high doses of mutagens under the conditions of previous exposure to these (or other) mutagens in low doses. Low doses of mutagen activate a number of protective mechanisms in a living object, which are called hormetic. Thus, the adaptive response and hormesis are links in the same chain. Radiation hormesis refers to the generally positive effect of low doses of low LET radiation on biological objects. The phenomenology of radiation-induced adaptive response and radiation hormesis for biological objects of different levels of organization is considered; the review of existing theories describing the dose-effect relationship has been reviewed. The hypothesis proposing one of the mechanisms of formation of radiation adaptive response of cells taking into account the conformational structure of chromatin has been submitted. The analysis of modern concepts of the phenomenon of hormesis on the basis of modeling of molecular mechanisms of formation of hormetic reactions to low-dose low LET radiation has been carried out. The parameters that can be used for quantitative and graphical evaluation of the phenomenon of hormesis was considered, and a formula for calculating the coefficient of radiation-induced adaptive response has been proposed. A review of mathematical models describing the radiation relative risk of gene mutations and neoplastic transformations at low-dose irradiation of cohorts has been performed. The following conclusions have been made: radiation hormesis and adaptive response are generally recognized as real and reproducible biological phenomena, which should be considered as very important phenomena of evolutionarily formed biological protection of living organisms from ionizing radiation. The hormesis model of dose-response relationship makes much more accurate predictions of a living object's response to radiation (or other stressors) in the low-dose range than the linear threshold (LNT) model does. The LNT model can adequately describe reactions only in the region of high doses of radiation, and, therefore, extrapolation modeling of biological object’s reactions from the zone of high doses to low doses is not correct.

 Articles related

Alexander V. Nemukhin,Bella L. Grigorenko,Igor V. Polyakov,Sofya V. Lushchekina    

We illustrate modern modeling tools applied in the computational design of drugs acting as covalent inhibitors of enzymes. We take the Main protease (Mpro) from the SARS-CoV-2 virus as an important present-day representative. In this work, we c... see more


I. V. Drapak    

Introduction. Pharmacophore modeling is one of the most effective virtual screening methods. This method allows to determine the set and relative arrangement of specific molecular fragments that are required for the manifestation of a particular biologic... see more


F. Osareh,R. Khademi    

The purpose of this study was to map the structure of scientific outputs of petroleum field in Science Citation Index (SCI) accessible via Web of Science (WOS) during 1990 to 2011 and determine the position of Iran. The used research methods were citatio... see more


Bikash Panthi, Nurapati Pantha    

Molecular Dynamics (MD) simulations of propane dimer in different solvents (water, acetonitrile and methanol) were performed by using CHARMM platform for modeling the solute and solvents. A series of Umbrella sampling MD simulations were carried out in e... see more

Revista: Bibechana

Gobalan K,Ahamed John    

Bioinformatics is the application of statistics and computer science to the field of molecular biology. The term bioinformatics was coined by Paulien Hogeweg in 1979 for the study of bioinformatics processes in biotic systems. Its primary use since at le... see more