Home  /  Aerospace  /  Vol: 5 Núm: 2 Par: June (2018)  /  Article
ARTICLE
TITLE

Effects of the Back Plate Inner Diameter on the Frictional Heat Input and General Performance of Brush Seals

SUMMARY

Reducing losses in the secondary air system of gas and steam turbines can significantly increase the efficiency of such machines. Meanwhile, brush seals are a widely used alternative to labyrinth seals. Their most valuable advantage over other sealing concepts is the very small gap between the sealing package and the rotor and thus reduced leakage mass flow. This small gap can be achieved due to the great radial flexibility without running the risk of severe detrimental deterioration in case of rubbing. Rubbing between rotor and seal during operation might occur as a result of e.g., an unequal thermal expansion of the rotor and stator or a rotor elongation due to centrifugal forces or manoeuvre forces. Thanks to the flexible structure of the brush seal, the contact forces during a rubbing event are reduced; however, the frictional heat input can still be considerable. Particularly in aircraft engines with their thin and lightweight rotor structures, the permissible material stresses can easily be exceeded by an increased heat input and thus harm the engine’s integrity. The geometry of the seal has a decisive influence on the resulting contact forces and consequently the heat input. This paper is a contribution to further understand the influence of the geometrical parameters of the brush seal on the heat input and the leakage during the rubbing of the seal on the rotor. In this paper, a total of three seals with varied back plate inner diameter are examined in more detail. The experimental tests were carried out on the brush seal test rig of the Institute of Thermal Turbomachinery (ITS) under machine-relevant conditions. These are represented by pressure differences of 1 to 7 bar, surface speeds of 30 to 180 m/s and radial interferences of 0.1 to 0.4 mm. For a better interpretation, the results were compared with those obtained at the static test rig of the Institute of Jet Propulsion and Turbomachinery (IFAS) at the Technical University of Braunschweig. The stiffness, the blow-down and the axial behaviour of the seals as a function of the differential pressure can be examined at this test rig. It could be shown that the back plate inner diameter has a decisive influence on the overall operating behaviour of a brush seal.

 Articles related

Antonio Paolozzi,Ignazio Ciufolini,Alessandro Gabrielli    

LARES is a satellite of the Italian Space Agency, successfully launched with the new VEGA launcher in the occasion of its inaugural flight, VV01. It was put in a circular orbit at 1450 km altitude. This altitude was required to reduce atmospheric drag, w... see more


Ramazan ÖZMEN,Mustafa Günay    

Thin-walled structures is used commonly as energy absorbers at the front and back of the coaches. These parts should be designed to minimize the damage to the vehicle and prevent the passengers from fatality and/or injury by absorbing the collision energ... see more


Martina Lindner and Markus Schmid    

The production of barrier packaging materials, e.g., for food, by physical vapor deposition (PVD) of inorganic coatings such as aluminum on polymer substrates is an established and well understood functionalization technique today. In order to achieve a ... see more

Revista: Coatings