ARTICLE
TITLE

Velocity and Shape of Explosive Computation using Multi-Material and ALE Formulations

SUMMARY

In this paper, a mathematical and numerical description of the bulk viscosity for an equation of state that is linear in density is presented. The bulk viscosity is used in many academic and industrial dynamic codes, and there is no description concerning the smearing of the shock for engineers and researchers in the manuals or in published papers.  To clearly show the usefulness of the bulk viscosity, a simple one dimensional problem is used, where a shock is developed through a pressure wave travelling inside a compressible fluid. By adding a viscous pressure to equilibrium equations, high oscillations in the front shock have been considerably attenuated, by thickening the shock over few element mesh sizes.The method is developed mathematically for one dimensional hydrodynamic problem, but has been used successfully for more complex applications including high-impact problems, explosive detonation in air and underwater explosions. Application of the method to a complex problem is illustrated in calculation of the peak velocity and shape of an explosively-formed projectile (EFP).The symmetry common to most EFPs permits their characterization using 2D axisymmetric analysis. Formation of an EFP entails volumetric expansion of the explosive and extensive plastic flow of the metal plate, both of which can be calculated using an Arbitrary Lagrangian Eulerian (ALE) method. Accordingly, a 2D axisymmetric ALE was used to calculate the velocity and shape of an EFP. The methodology was validated against EFP velocity and shape measurements published in SAND-92-1879 [Hertel 1992].The Jones-Wilkins-Lee (JWL) equation of state (EOS) were used for the LX-14 high explosive backing the copper plate. The explosive burn was initiated using a high explosive material which converts the explosive charge into a gas at high pressure and temperature. The copper plate and steel casing were included using the constitutive model developed by Johnson and Cook. An equation of state developed by Grüneisen for high-pressure simulation was used for the metals. The calculated peak velocity of the EFP was in excellent agreement with the peak velocity published by Hertel. However, the calculated shape did not agree with the experimental shadowgraph of the plate. Specifically, the calculated shape was elongated compared to the measurement and continued to elongate as long as the calculation was continued. In other words, the shape of the copper plate did not reach a dynamic equilibrium.The methodology for calculating the EFP peak velocity and shape is described. The calculated results are compared to measurements from Hertel. Finally, possible sources for the inaccuracy of the calculated shape are investigated. These include the element size and formulation, initial geometry of EFP, explosive equation of state and the constitutive model for the copper plate.

 Articles related

Igor M. Pankratov, Volodymyr Y. Bochko    

The runaway electron event is the fundamental physical phenomenon and tokamak is the most advanced conception of the plasma magnetic confinement. The energy of disruption generated runaway electrons can reach as high as tens of mega-electron-volt and the... see more


Mukhsinun Hadi Kusuma,Anhar Riza Antariksawan,Giarno Giarno,Dedy Haryanto,Surip Widodo    

The latest accident in Japan's nuclear power station became a valuable experience to start engaging passive cooling systems (PCS) more aggressively to improve safety aspects in nuclear power reactors being studied in Indonesia. This investigation is rela... see more

Revista: Tri Dasa Mega

Mushrif Choudhury    

Corrosive effects of high-speed air as wind pressing against an airplane wing lead to wing degradation and failure at a much faster rate than the aging of an idle wing. For this reason, the velocity profile of a NACA 0012 airfoil cross-section subjected ... see more


Ezequiel Goldberg, C. Manuel Carlevaro, Luis Ariel Pugnaloni    

We report two-dimensional simulations of circular and polygonal grains passing through an aperture at the bottom of a silo. The mass flow rate for regular polygons is lower than for disks\red{,} as observed by other authors. We show that both the exit ve... see more


Manuel Regueiro-Picallo, Juan Naves, Jose Anta, Jerónimo Puertas, Joaquín Suárez    

A Computational Fluid Dynamics (CFD) model was developed to analyze the open-channel flow in a new set of egg-shaped pipes for small combined sewer systems. The egg-shaped cross-section was selected after studying several geometries under different flow ... see more

Revista: Water