ARTICLE
TITLE

APPLICATION OF CYBERPHYSIC BIOSENSORS AND IMMUNOSENSORS SYSTEMS

SUMMARY

Background. The artical reviews the cyber-physical biosensor and immunosensory systems, which are the new generation of information-measuring systems with the use in the design of biological materials, which ensures their high selectivity. It is considered the following types of cyberphysical biosensory and immunosensory systems: electrochemical; optical on the basis of silicon oxide, quartz and glass; on the basis of nanomaterials; genetically coded or synthetic fluorescent; microbial, developed using synthetic biology and genetic engineering.Materials and methods. It is carried out the classification of the studied systems for relatively sensitive elements and the possibility of using different modes of physico-chemical transformation of the measuring quantity.Methods of manufacturing electrochemical cyberphysical biosensory and immunosensory methods are considered. Separately presented methods of manufacturing, by modifying the surface of metallic and carbon electrodes using biomaterials such as enzymes, antibodies or DNA.Results. In the article, the studied systems are compared in terms of technology, specificity, detection threshold, analysis duration, cost and portability. Optical research systems, which realize their actions with the help of immobilizers and can be made of gold, carbon-based materials, quartz or glass, are presented. The most important directions of use of cyberphysical biosensor and immunosensory systems in clinics and diagnostic institutions are described, in particular, for monitoring of blood glucose levels in patients with diabetes, as well as for the development of new drugs, biopsy and biomedicine. It is labeled cyberphysical biosensor and immunosensory systems using genetic coding or synthetic fluorescence have been considered, which made it possible to study biological processes, including various molecular transformations within cells. The advantages of visualizing in vivo with the help of small molecule systems are described in order to better understand the cellular activity and mechanism of action of DNA, RNA and microRNA. Cellular biosensor and immunosensory systems that can be used to monitor the biochemical oxygen demand, environmental toxicity, to detect pesticides and heavy metals, and to monitor environmental efficiency in electricity generation are described.Conclusions. The studied systems of silicon-based nanomaterials have the highest potential in terms of application for bivamisalizatsii, biosensor analysis and treatment of oncological diseases. The creation of high sensitive miniature devices requires the development of various micro and nano-cyberphysical biosensor and immunosensory platforms with the use of integrated technologies that use electrochemical or optical bioelectronic principles with a combination of biomolecules or biological materials, polymers and nanomaterials.

 Articles related