Artikel Review: Interaksi Silang Pensinyalan WNT dan TGF-β pada Kanker Paru dengan MikroRNA sebagai Mayoritas Regulator

Nita Rahmasari, Melisa I. Barliana, Riezki Amalia

Abstract


Posisi pertama untuk kejadian dan mortalitas kanker paru di dunia saat ini masih menjadi tantangan untuk menemukan dan mengembangkan terapi potensial bagi pasien kanker paru. Pemahaman pada tingkat molekular mengenai progres tumor pada kanker sangat diperlukan untuk menemukan rejimen terapi yang efektif; terdapat perubahan genetik pada berbagai jalur pensinyalan pengatur proses biologi yang terlibat selama karsinogenesis. Pensinyalan WNT dan TGF-β telah banyak diidentifikasi pada beberapa penelitian, khususnya mengenai interaksi keduanya dalam tumorigenesis paru, namun belum cukup diulas secara jelas. Oleh karena itu, dilakukan pengkajian terhadap 10 artikel riset yang diakses secara online melalui database MeSH PubMed dengan kata kunci “Receptors, Wnt/Wnt Signaling Pathway/Wnt Proteins” AND “Receptors, Transforming Growth Factor beta/Transforming Growth Factor beta” AND “Lung Neoplasms/Small Cell Lung Carcinoma/Carcinoma, Non-Small-Cell Lung”, untuk menyusun ulasan mengenai interaksi silang keduanya pada kanker paru secara lebih jelas. Secara menyeluruh, interaksi silang antara pensinyalan WNT dan TGF-β meregulasi pemrograman Cancer Stem Cell (CSC) dan Epithelial–Mesenchymal Transition (EMT) selama tumorigenesis dan prognosis kanker paru yang berdampak pada metastasis, peningkatan agresivitas, serta kemoresistensi tumor. Interaksi silang pensinyalan WNT dan TGF-β pada kanker paru dapat terjadi secara langsung pada tingkat kompleks transkripsi mereka ataupun dengan melibatkan suatu mediator penting, yang sebagian besarnya diperankan oleh mikroRNA. Terdapat berberapa mikroRNA yang telah teridentifikasi baik pada kanker paru dalam meregulasi interaksi silang antara pensinyalan WNT dan TGF-β, seperti miR-1827, miR-3127-5p, dan miR-128-3p. Pembahasan ini mengimplikasikan peluang yang tinggi pada penekanan kedua jalur WNT dan TGF-β secara simultan dan efektif dengan menargetkan suatu molekul yang berpotensi untuk kanker paru.

Kata kunci: Interaksi silang pensinyalan, kanker paru, pensinyalan TGF-β, pensinyalan WNT 

 

Review Article: Crosstalk between WNT and TGF-β signaling in Lung Cancer with MicroRNA as Majority of Regulators


Abstract

The discovery and development of potential therapies to reduce the incidence and mortality of lung cancer is still a challenge. Consequently, identifying an effective therapeutic regimen is necessary for tumor progression in cancer at the molecular level due to genetic changes in various signaling pathways that regulate the biological processes involved during carcinogenesis. WNT and TGF-β signaling have been widely identified in several studies, with regards to the interaction of both in pulmonary tumorigenesis although they have not been adequately reviewed clearly. Hence, an assessment of 10 research articles was conducted online through the MeSH PubMed database with the keywords “Receptors, Wnt/Wnt Signaling Pathway/Wnt Proteins” AND “Receptors, Transforming Growth Factor beta/Transforming Growth Factor beta” AND “Lung Neoplasms/Small Cell Lung Carcinoma/Carcinoma, Non-Small-Cell Lung”, to compile an overview of the crosstalk. Furthermore, the crosstalk between WNT and TGF-β signaling regulates the programming of Cancer Stem Cell (CSC) and Epithelial–Mesenchymal Transition (EMT) during tumorigenesis and prognosis of lung cancer that leads to metastasis, increased aggressiveness, and tumor chemoresistance. The crosstalk of WNT and TGF-β signaling in lung cancer can occur directly at the level of their transcription complex or by involving an important mediator, most of which is played by microRNA. There are several microRNAs identified in regulating crosstalk between WNT signaling and TGF-β, such as miR-1827, miR-3127-5p, and miR-128-3p. The discussion implies a high opportunity for the simultaneous and effective suppression of both WNT and TGF-β pathways by targeting a molecule that has the potential for lung cancer.

Keywords: Lung cancer, signaling crosstalk, TGF-β signaling, WNT signaling


Keywords


Interaksi silang pensinyalan, kanker paru, pensinyalan TGF-β, pensinyalan WNT

References


Kementerian Kesehatan Republik Indonesia. Hari kanker sedunia 2019 [Diakses pada: 1 April 2020]. Tersedia dari: https://www.depkes.go.id/article/view/19020100003/hari-kanker-sedunia- 2019.html

World Health Organization. Press release latest global cancer data: Cancer burden rises to 18.1 million new cases and 9.6 million cancer deaths in 2018 [Diakses pada: 1 April 2020]. Tersedia dari: https://www.who.int/cancer/PRGlobocanFinal.pdf

Wu KL, Tsai YM, Lien CT, Kuo PL, Hung JY. The roles of microRNA in lung cancer. Int J Mol Sci. 2019;20(7):1–25. doi: 10.3390/ijms20071611

Zhang Z, Zhou Y, Qian H, Shao G, Lu X, Chen Q, et al. Stemness and inducing differentiation of small cell lung cancer NCI-H446 cells. Cell Death Dis. 2013;4(5):1–13. doi: 10.1038/cddis.2013.152

Chanvorachote P, Chamni S, Ninsontia C, Phiboonchaiyanan PP. Potential anti-metastasis natural compounds for lung cancer. Anticancer Res. 2016;36(11):5707–17. doi: 10.21873/anticanres.11154

Hu J, Cheng Y, Li Y, Jin Z, Pan Y, Liu G, et al. MicroRNA-128 plays a critical role in human non-small cell lung cancer tumourigenesis, angiogenesis and lymphangiogenesis by directly targeting vascular endothelial growth factor-C. Eur J Cancer. 2014;50(13):2336–50. doi: 10.1016/j.ejca.2014.06.005

World Health Organization. Cancer [Diakses pada: 1 April 2020]. Tersedia dari: https://www.who.int/health-topics/cancer#tab=tab_1

Amalia R, Abdelaziz M, Puteri MU, Hwang J, Anwar F, Watanabe Y, et al. TMEPAI/PMEPA1 inhibits Wnt signaling by regulating β-catenin stability and nuclear accumulation in triple negative breast cancer cells. Cell Signal. 2019;59(March):24–33. doi: 10.1016/j.cellsig.2019.03.016

Sanchez-Vega F, Mina M, Armenia J, Chatila WK, Luna A, La KC, et al. Oncogenic signaling pathways in the cancer genome atlas. Cell. 2018;173(2):321-337.e10. doi: 10.1016/j.cell.2018.03.035

Lu T, Yang X, Huang Y, Zhao M, Li M, Ma K, et al. Trends in the incidence, treatment, and survival of patients with lung cancer in the last four decades. Cancer Manag Res. 2019;11:943–53. doi: 10.2147/CMAR.S187317

Teng Y, Wang X, Wang Y, Ma D. Wnt/β-catenin signaling regulates cancer stem cells in lung cancer A549 cells. Biochem Biophys Res Commun. 2010;392(3):373–9. doi: 10.1016/j.bbrc.2010.01.028

Zhang J, Tian X-J, Xing J. Signal transduction pathways of EMT induced by TGF-β, SHH, and WNT and their crosstalks. J Clin Med. 2016;5(4):41. doi: 10.3390/jcm5040041

Syed V. TGF-β signaling in cancer. J Cell Biochem. 2016;117(6):1279–87. doi: 10.1002/jcb.25496

Zhou B, Liu Y, Kahn M, Ann DK, Han A, Wang H, et al. Interactions between β-catenin and transforming growth factor-β signaling pathways mediate epithelial- mesenchymal transition and are dependent on the transcriptional co-activator cAMP-response element-binding protein (CREB)-binding protein (CBP). J Biol Chem. 2012;287(10):7026–38. doi: 10.1074/jbc.M111.276311

Minoo P, Li C. Cross-talk between transforming growth factor-β and Wingless/Int pathways in lung development and disease. Int J Biochem Cell Biol. 2010;42(6):809–12. doi: 10.1016/j.biocel.2010.02.011

Janda CY, Waghray D, Levin AM, Thomas C, Garcia KC. Structural basis of Wnt recognition by frizzled. Science. 2012;336(6090):59–64. doi: 10.1126/science.1222879

Rios-Esteves J, Haugen B, Resh MD. Identification of key residues and regions important for porcupine-mediated Wnt acylation. J Biol Chem. 2014;289(24):17009–19. doi: 10.1074/jbc.M114.561209

Rudloff S, Messerschmidt D, Kemler R. Wnt signaling in development, vol. 2, handbook of cell signaling, 2/e. 2010. doi: 10.1016/B978-0-12-374145-5.00228-X

Duchartre Y, Kim YM, Shrestha S, Dennerlein J et al. The Wnt Signaling Pathway in Cancer. Physiol Behav. 2018;176(1):139–48

Niehrs C, Acebron SP. Mitotic and mitogenic Wnt signalling. EMBO J. 2012;31(12):2705–13. doi: 10.1038/emboj.2012.12

Rapp J, Jaromi L, Kvell K, Miskei G, Pongracz JE. WNT signaling—lung cancer is no exception. Respir Res. 2017;18(1):1–16. doi: 10.1186/s12931-017-0650-6

Kinoshita T, Goto T. Molecular mechanisms of pulmonary fibrogenesis and its progression to lung cancer: A review. Int J Mol Sci. 2019;20(6):1461. doi: 10.3390/ijms20061461

Stewart DJ. Wnt signaling pathway in non-small cell lung cancer. J Natl Cancer Inst. 2014;106(1):1–11. doi: 10.1093/jnci/djt356

Ng L, Kaur P, Bunnag N, Suresh J, Sung I, Tan Q, et al. WNT signaling in disease. Cells. 2019;8(8):826. doi: 10.3390/cells8080826

Nusse R, Fuerer C, Ching W, Harnish K, Logan C, Zeng A, et al. Wnt signaling and stem cell control. Cold Spring Harb Symp Quant Biol. 2008;73:59–66. doi: 10.1101/sqb.2008.73.035

Nusse R. Human wnt genes [Diakses pada: 1 April 2020]. Tersedia dari: http://web.stanford.edu/group/nusselab/cgi-bin/wnt/human

Nusse R, Clevers H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell. 2017;169(6):985–99. doi: 10.1016/j.cell.2017.05.016

Gao C, Xiao G, Hu J. Regulation of Wnt/β-catenin signaling by posttranslational modifications. Cell Biosci. 2014;4(1):1–20. doi: 10.1186/2045-3701-4-13

Zhan T, Rindtorff N, Boutros M. Wnt signaling in cancer. Oncogene. 2017;36(11):1461–73. doi: 10.1038/onc.2016.304

Baarsma HA, Königshoff M. “WNT-er is coming”: WNT signalling in chronic lung diseases. Thorax. 2017;72(8):746–59. doi: 10.1136/thoraxjnl-2016-209753

Clevers H, Nusse R. Wnt/β-catenin signaling and disease. Cell. 2012;149(6):1192–205. doi: 10.1016/j.cell.2012.05.012

Zi Z. Molecular engineering of the TGF-β signaling pathway. J Mol Biol. 2019;431(15):2644–54. doi: 10.1016/j.jmb.2019.05.022

Saito A, Horie M, Nagase T. TGF-β signaling in lung health and disease. Int J Mol Sci. 2018;19(8):2460. doi: 10.3390/ijms19082460

Luo K. Signaling cross talk between TGF-b/Smad and other signaling pathways. Cold Spring Harb PersepcBiol. 2017;9(1):a022137. doi: 10.1101/cshperspect.a022137

Batlle E, Massagué J. Transforming growth factor-β signaling in immunity and cancer. Immunity. 2019;50(4):924–40. doi: 10.1016/j.immuni.2019.03.024

Xie F, Ling L, Van Dam H, Zhou F, Zhang L. TGF-β signaling in cancer metastasis. Acta Biochim Biophys Sin (Shanghai). 2018;50(1):121–32. doi: 10.1093/abbs/gmx123

Pickup M, Novitskiy S, Moses HL. The roles of TGFβ in the tumour microenvironment. Nat Rev Cancer. 2013;13(11):788–99. doi: 10.1038/nrc3603

Saito A, Horie M, Micke P, Nagase T. The role of TGF-β signaling in lung cancer associated with idiopathic pulmonary fibrosis. Int J Mol Sci. 2018;19(11):3611. doi: 10.3390/ijms19113611

Vander Ark A, Cao J, Li X. TGF-β receptors: In and beyond TGF-β signaling. Cell Signal. 2018;52(August):112–20. doi: 10.1016/j.cellsig.2018.09.002

Chae DK, Ban E, Yoo YS, Kim EEK, Baik JH, Song EJ. MIR-27a regulates the TGF-β signaling pathway by targeting SMAD2 and SMAD4 in lung cancer. Mol Carcinog. 2017;56(8):1992–8. doi: 10.1002/mc.22655

Ying Z, Tian H, Li Y, Lian R, Li W, Wu S, et al. CCT6A suppresses SMAD2 and promotes prometastatic TGF-β signaling. J Clin Invest. 2017;127(5):1725–40. doi: 10.1172/JCI90439

Cai J, Fang L, Huang Y, Li R, Xu X, Hu Z, et al. Simultaneous overactivation of Wnt/β-catenin and TGFβ signalling by miR-128-3p confers chemoresistance-associated metastasis in NSCLC. Nat Commun. 2017;8(May 2017):15870. doi: 10.1038/ncomms15870

Chrysanthakopoulos NA, S Dareioti N. Molecular abnormalities and cellular signaling pathways alterations in lung cancer. Med Dent Res. 2018;1(1):1–11. doi: 10.15761/MDR.1000105

Cheruku HR, Mohamedali A, Cantor DI, Tan SH, Nice EC, Baker MS. Transforming growth factor-β, MAPK and Wnt signaling interactions in colorectal cancer. EuPA Open Proteomics. 2015;8:104–15. doi: 10.1016/j.euprot.2015.06.004

Ahmadi A, Najafi M, Farhood B, Mortezaee K. Transforming growth factor-β signaling: Tumorigenesis and targeting for cancer therapy. J Cell Physiol. 2019;234(8):12173–87. doi: 10.1002/jcp.27955

Colak S, ten Dijke P. Targeting TGF-β signaling in cancer. Trends in Cancer. 2017;3(1):56–71. doi: 10.1016/j.trecan.2016.11.008

Luo X, Ding Q, Wang M, Li Z, Mao K, Sun B, et al. In vivo disruption of TGF-β Signaling by Smad7 in airway epithelium alleviates allergic asthma but aggravates lung carcinogenesis in mouse. PLoS One. 2010;5(4):e10149. doi: 10.1371/journal.pone.0010149

Yeh HW, Lee SS, Chang CY, Lang YD, Jou YS. A new switch for TGFβ in cancer. Cancer Res. 2019;79(15):3797–805. doi: 10.1158/0008-5472.CAN-18-2019

Lebrun J-J. The dual role of TGFβ in human cancer: From tumor suppression to cancer metastasis. ISRN Mol Biol. 2012;2012:381428. doi: 10.5402/2012/381428

Yeh HW, Hsu EC, Lee SS, Lang YD, Lin YC, Chang CY, et al. PSPC1 mediates TGF-β1 autocrine signalling and Smad2/3 target switching to promote EMT, stemness and metastasis. Nat Cell Biol. 2018;20(4):479–91. doi: 10.1038/s41556-018-0062-y

Lin L, Tu H Bin, Wu L, Liu M, Jiang GN. MicroRNA-21 regulates non-small cell lung cancer cell invasion and chemo-sensitivity through SMAD7. Cell Physiol Biochem. 2016;38(6):2152–62. doi: 10.1159/000445571

Papa E, Weller M, Weiss T, Ventura E, Burghardt I, Szabó E. Negative control of the HGF/c-MET pathway by TGF-β: A new look at the regulation of stemness in glioblastoma article. Cell Death Dis. 2017;8(12):3210. doi: 10.1038/s41419-017-0051-2

Phi LTH, Sari IN, Yang YG, Lee SH, Jun N, Kim KS, et al. Cancer stem cells (CSCs) in drug resistance and their therapeutic implications in cancer treatment. Stem Cells Int. 2018;2018:5416923. doi: 10.1155/2018/541692

Hirata N, Yamada S, Sekino Y, Kanda Y. Tobacco nitrosamine NNK increases ALDH-positive cells via ROS-Wnt signaling pathway in A549 human lung cancer cells. J Toxicol Sci. 2017;42(2):193–204. doi: 10.2131/jts.42.193

Ahmad A, Gadgeel SM. Lung cancer and personalized medicine: Novel therapies and clinical management, preface. Adv Exp Med Biol. 2016;893:v–vi.

Whang YM, Jo U, Sung JS, Ju HJ, Kim HK, Park KH, et al. Wnt5a is associated with cigarette smoke-related lung carcinogenesis via protein kinase C. PLoS One. 2013;8(1):e53012. doi: 10.1371/journal.pone.0053012

Wen J, Fu JH, Zhang W, Guo M. Lung carcinoma signaling pathways activated by smoking. Chin J Cancer. 2011;30(8):551–8. doi: 10.5732/cjc.011.10059

Xi S, Xu H, Shan J, Tao Y, Hong JA, Inchauste S, et al. Cigarette smoke mediates epigenetic repression of miR-487b during pulmonary carcinogenesis. J Clin Invest. 2013;123(3):1241–61. doi: 10.1172/JCI61271

Gao L, Hu Y, Tian Y, Fan Z, Wang K, Li H, et al. Lung cancer deficient in the tumor suppressor GATA4 is sensitive to TGFBR1 inhibition. Nat Commun. 2019;10(1):1665. doi: 10.1038/s41467-019-09295-7

Ong J, Timens W, Rajendran V, Algra A, Spira A, Lenburg ME, et al. Identification of transforming growth factor-beta-regulated microRNAs and the microRNAtargetomes in primary lung fibroblasts. PLoS One. 2017;12(9):e0183815. doi: 10.1371/journal.pone.0183815

Lindsey S, Langhans SA. Crosstalk of oncogenic signaling pathways during epithelial-mesenchymal transition. Front Oncol. 2014;4:358. doi: 10.3389/fonc.2014.00358

Wang X, Zhang Y, Fu Y, Zhang J, Yin L, Pu Y, et al. MicroRNA-125b may function as an oncogene in lung cancer cells. Mol Med Rep. 2015;11(5):3880–7. doi: 10.3892/mmr.2014.3142

Puisieux A, Brabletz T, Caramel J. Oncogenic roles of EMT-inducing transcription factors. Nat Cell Biol. 2014;16(6):488–94. doi: 10.1038/ncb2976

Ren J, Wang R, Huang G, Song H, Chen Y, Chen L. SFRP1 inhibits epithelial-mesenchymal transition in A549 human lung adenocarcinoma cell line. Cancer Biother Radiopharm. 2013;28(7):565–71. doi: 10.1089/cbr.2012.1453

Xiao W, Zhong Y, Wu L, Yang D, Ye S, Zhang M. Prognostic value of microRNAs in lung cancer: A systematic review and meta analysis. Mol Clin Oncol. 2019:10(1):67–77. doi: 10.3892/mco.2018.1763

Ho CS, Yap SH, Phuah NH, In LLA, Hasima N. MicroRNAs associated with tumour migration, invasion and angiogenic properties in A549 and SK-Lu1 human lung adenocarcinoma cells. Lung Cancer. 2014;83(2):154–62. doi: 10.1016/j.lungcan.2013.11.024

Otsuki Y, Saya H, Arima Y. Prospects for new lung cancer treatments that target EMT signaling. Dev Dyn. 2018;247(3):462–72. doi: 10.1002/dvdy.24596

Yang Y, Sun Y, Wu Y, Tang D, Ding X, Xu W, et al. Downregulation of miR-3127-5p promotes epithelial-mesenchymal transition via FZD4 regulation of Wnt/β-catenin signaling in non-small-cell lung cancer. Mol Carcinog. 2018;57(7):842–53. doi: 10.1002/mc.22805

Pan J, Zhou C, Zhao X, He J, Tian H, Shen W, et al. A two-miRNA signature (miR-33a-5p and miR-128-3p) in whole blood as potential biomarker for early diagnosis of lung cancer. Sci Rep. 2018;8(1):16699. doi: 10.1038/s41598-018-35139-3

Li M, Fu W, Wo L, Shu X, Liu F, Li C. MiR-128 and its target genes in tumorigenesis and metastasis. Exp Cell Res. 2013;319(20):3059–64. doi: 10.1016/j.yexcr.2013.07.031

Johnson RW, Merkel AR, Page JM, Ruppender NS, Guelcher SA, Sterling JA. Wnt signaling induces gene expression of factors associated with bone destruction in lung and breast cancer. Clin Exp Metastasis. 2014;31(8):945–59. doi: 10.1007/s10585-014-9682-1

Shukla S, Sinha S, Khan S, Kumar S, Singh K, Mitra K, et al. Cucurbitacin B inhibits the stemness and metastatic abilities of NSCLC via downregulation of canonical Wnt/β-catenin signaling axis. Sci Rep. 2016;6:21860. doi: 10.1038/srep21860

Kim J, Hwan Kim S. CK2 inhibitor CX-4945 blocks TGF-β1-induced epithelial-to-mesenchymal transition in A549 human lung adenocarcinoma cells. PLoS One. 2013;8(9):e74342. doi: 10.1371/journal.pone.0074342



Digital Object Identifier

DOI : https://doi.org/10.15416/ijcp.2021.10.1.62


Dimension Citation Metrics Badge

Refbacks

  • There are currently no refbacks.


 Indonesian Journal of Clinical Pharmacy is indexed by

        

  Creative Commons License

IJCP by Universitas Padjadjaran is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License

 

View My Stats