EMERGENCY BURNING OF SOLID ROCKET PROPELLANT: DAMAGE RISK ASSESSMENT TO PEOPLE IN THE WORKPLACE

Authors

DOI:

https://doi.org/10.15802/stp2020/208097

Keywords:

numerical modeling, risk of damage, emergency burning of solid rocket propellant, thermal pollution of air

Abstract

Purpose. This work includes the development of a computer model to calculate the risk of thermal damage to people in the shop in case of emergency burning of solid rocket propellant. Methodology. To calculate the temperature field in the shop in order to determine the zones of thermal damage to workers in the building, the equation expressing the law of energy conservation was used. Based on this modeling equation, the temperature field in the shop is calculated in the presence of a source of heat emission – burning solid rocket propellant. To calculate the velocity field of air flow in the shop, taking into account the location of obstacles in the path of heat wave propagation, we used the model of vortex-free air motion – the equation of the velocity potential. A two-step finite difference scheme of conditional approximation is used to numerically solve the equation for the velocity potential. A difference splitting scheme was used to numerically solve the energy equation. At the first stage of construction of the difference splitting scheme of the two-dimensional energy equation into the system of one-dimensional equations is performed. Each one-dimensional equation allows you to calculate the temperature change in one coordinate direction. The point-to-point computation scheme is used to determine the temperature. When conducting a computational experiment, the air exchange in the building is taken into account. The risk assessment of thermal damage to personnel in the building is performed for different probabilities of the place of emergency combustion of solid rocket propellant. Findings. Using numerical model prediction of the potential risk areas of thermal damage to staff in the shop for a variety of emergency situations was performed. Originality. A computer model for rapid assessment of the potential risk of damage to people in the shop in case of emergency burning of solid rocket propellant was constructed. Practical value. The authors developed a code that allows you to quickly simulate the temperature fields formation in the shop in case of emergency burning of solid rocket propellant and to identify potential areas of thermal damages to workers based on this information. The developed computer program can be used to assess the risk of thermal damage in the chemical industry in case of emergency.

Author Biographies

M. M. Biliaiev, Dnipro National University of Railway Transport named after Academician V. Lazaryan

Dep. «Hydraulics and Water Supply», Dnipro National University of Railway Transport named after Academician V. Lazaryan, Lazaryana St., 2, Dnipro, Ukraine, 49010, tel. +38 (056) 273 15 09, e-mail water.supply.treatment@gmail.com

O. V. Berlov, Prydniprovska State Academy of Civil Engineering and Architecture

Dep. «Life Safety», Prydniprovska State Academy of Civil Engineering and Architecture, Chernyshevskoho St., 24а, 49600, tel. +38 (056) 756-34-57 e-mail berlov@pgasa.dp.ua

V. V. Biliaieva, Oles Honchar Dnipropetrovsk National University

Dep. «Fluid Dynamics, Energy and Mass Transfer», Oles Honchar Dnipropetrovsk National University, Haharina Av., 72, Dnipro, Ukraine, 49000, tel. +38 (056) 374 98 22, e-mail water.supply.treatment@gmail.com

V. A. Kozachyna, Dnipro National University of Railway Transport named after Academician V. Lazaryan

Dep. «Hydraulics and Water Supply», Dnipro National University of Railway Transport named after Academician V. Lazaryan, Lazaryana St., 2, Dnipro, Ukraine, 49010, tel. +38 (056) 273 15 09, e-mail v.kozachyna@gmail.com

I. V. Kalashnikov, Kharkiv Branch Office «Design and Research Institute of Railway Transport» of the Ukrainian Railway PJSC

Kharkiv Branch Office «Design and Research Institute of Railway Transport» of the Ukrainian Railway PJSC, Kotliara St., 7, Kharkiv, 61052, tel. +38 (057) 724 41 25, e-mail uzp38@ukr.net

References

Alymov, V. T., & Tarasova, N. P. (2004). Tekhnogennyy risk. Analiz i otsenka: uchebebnoe posobie dlya vuzov. Moscow: Akademkniga. (in Russian)

Belyaev, N. N., Gunko, Y. Y., Kirichenko, P. S., & Muntyan, L. Y. (2017). Otsenka tekhnogennogo riska pri emissii opasnykh veshchestv na zheleznodorozhnom transporte. Krivoi Rog: Kozlov R. A. (in Russian)

Zgurovskiy, M. Z., Skopetskiy, V. V., Khrushch, V. K., & Belyaev, N. N. (1997). Chislennoe modelirovanie rasprostraneniya zagryazneniya v okruzhayushchey srede. Kуiv: Naukova dumka. (in Russian)

Marchuk, G. I. (1982). Matematicheskoye modelirovaniye v probleme okruzhayushchey sredy. Moscow: Nauka. (in Russian)

Samarskij, A. A. (1983). Teoriya raznostnyh skhem. Moscow: Nauka. (in Russian)

Berlov, O. V. (2016). Atmosphere protection in case of emergency during transportation of dangerous cargo. Sciance and Transport Progress, 1(61), 48-54. DOI: https://doi.org/10.15802/stp2016/60953 (in English)

Biliaiev, M. M., Berlov, O. V., Kozachina, V. A., Kalashnikov, I. V. & Shevchenko, O. V. (2020). Risk assessment of thermal damage to people at industrial sites in case of emergency of burning solid propellant. Sciance and Transport Progress, 1(85), 7-16. DOI: https://doi.org/10.15802/stp2020/200752 (in English)

Biliaiev, M. M., & Kharytonov, M. M. (2012). Numerical Simulation of Indoor Air Pollution and Atmosphere Pollution for Regions Having Complex Topography. NATO Science for Peace and Security. Series C: Environmental Security, 87-91. DOI: https://doi.org/10.1007/978-94-007-1359-8_15 (in English)

Boris, J., Patnaik, G., Obenschain, K., Moses, A., Obenschain, M.-Y., Theodore, Y., Delaney, J. & Donnelly, J. (2010). Fast and accurate prediction of windborne contaminant plumes for civil defense in cities. The Fifth International Symposium on Computational Wind Engineering (CWE2010), 1-9. (in English)

Cao, C., Li, C., Yang, Q., & Zhang, F. (2017). Multi-Objective Optimization Model of Emergency Organization Allocation for Sustainable Disaster Supply Chain. Sustainability, 9(11), 1-22. DOI: https://doi.org/10.3390/su9112103 (in English)

Ilić, P., Ilić, S., & Stojanović Bjelić, L. (2018). Hazard Modelling of Accidental Release Chlorine Gas Using Modern Tool-Aloha Software. Quality of Life (Banja Luka)-APEIRON, 16(1-2), 38-45. DOI: https://doi.org/10.7251/QOL1801038I (in English)

Komatina, D. Ilić, Galjak, J., Belošević, S. (2018). Simulation of chemical accidents with acetylene in «messer tehnogas» kraljevo plant by «aloha» software program. The University Thought-Publication in Natural Sciences, 8(2), 19-26. DOI: https://doi.org/10.5937/univtho8-18014 (in English)

Lacome, J. M., Truchot, D. & Duplantier S. (2017). Application of an innovative risk dedicated procedure for both conventional and 3D atmospheric dispersion models evaluation. 8 International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes (HARMO 18) (pp. 821-825). Bologne, Italy. (in English)

Lee, H., Sohn, J.-R., Byeon, S.-H., Yoon, S., & Moon, K. (2018). Alternative Risk Assessment for Dangerous Chemicals in South Korea Regulation: Comparing Three Modeling Programs. International Journal of Environmental Research and Public Health, 15(8), 1-12. DOI: https://doi.org/10.3390/ijerph15081600 (in English)

Sideris, G. M., Christolis, M. N., Markatos, N. C. (2020). Numerical simulation of pollutants dispersion around an electric-arc-furnace in case of an accidental release. Biodiversity International Journal, 4(1), 50-57. DOI: https://doi.org/10.15406/bij.2020.04.00164 (in English)

Published

2020-07-15

How to Cite

Biliaiev, M. M., Berlov, O. V., Biliaieva, V. V., Kozachyna, V. A., & Kalashnikov, I. V. (2020). EMERGENCY BURNING OF SOLID ROCKET PROPELLANT: DAMAGE RISK ASSESSMENT TO PEOPLE IN THE WORKPLACE. Science and Transport Progress, (3(87), 7–15. https://doi.org/10.15802/stp2020/208097

Issue

Section

ECOLOGY AND INDUSTRIAL SAFETY