Synthesis, Structural and Optical Characterization of Titanium Dioxide Doped by (Ce, Yb) Dedicated to Photonic Conversion

https://doi.org/10.22146/ijc.43947

Zobair El Afia(1*), Mohamed Youssef Messous(2), Mohamed Cherkaoui(3), Mounia Tahri(4)

(1) Laboratory of Materials, Electrochemistry, and Environment, Faculty of Sciences, University Ibn Tofail, 14000 Kenitra, Morocco
(2) Material Sciences Unit USM/DERS, National Center for Energy, Sciences and Nuclear Techniques-CNESTEN, B.P 1382 R.P 10001 Rabat, Morocco
(3) Laboratory of Materials, Electrochemistry, and Environment, Faculty of Sciences, University Ibn Tofail, 14000 Kenitra, Morocco
(4) National Center for Energy, Sciences and Nuclear Techniques-CNESTEN-B.P 1382 R.P 10001 Rabat, Morocco
(*) Corresponding Author

Abstract


The synthesis of TiO2 co-doped by (Ce, Yb) rare earth couple has been realized. This couple of rare earth can convert a high-energy photon to two low energy photons to enhance the energy efficiency of silicon solar cells. The undoped, 2% Ce doped- and (2% Ce, 4% Yb) Codoped- Titanium oxide were prepared by the co-precipitation method. The Infrared spectroscopy FTIR-ATR analysis indicates a continuous visible absorption in the 750–400 cm–1 region, confirming the formation of a titanium-oxygen bond. The X-Ray Diffraction characterization showed the dominance of the rutile crystalline phase with the presence of anatase one and the calculated crystallite size is between 7 to 13 nm. The X-Ray Fluorescence confirms the insertion of the dopants while the Inductively Coupled Plasma Mass Spectrometry ICP-MS showed the ratio 2 between Ce and Yb concentration. The thermogravimetric analysis indicated that Ce/Yb doped titanium was thermally stable. The absorption in the UV-visible (200 and 1000 nm) has been improved proportionally with the dopants.

Keywords


titanium dioxide; co-precipitation; rutile; anatase; photonic conversion

Full Text:

Full Text PDF


References

[1] Haider, A.J., AL-Anbari, R.H., Kadhim, G.R., and Salame, C.T., 2017, Exploring potential environmental applications of TiO2 nanoparticles, Energy Procedia, 119, 332–345.

[2] Gupta, K.K., Jassal, M., and Agrawal, A.K., 2008, Sol-gel derived titanium dioxide finishing of cotton fabric for self cleaning, Indian J. Fibre Text. Res., 33, 443–450.

[3] Afuyoni, M., Nashed, G., and Nasser, I.M., 2011, TiO2 doped with SnO2 and studing its structurail and electrical properties, Energy Procedia., 6, 11–20.

[4] Ray, S., and Lalman, J.A., 2016, Fabrication and characterization of an immobilized titanium dioxide (TiO2) nanofiber photocatalyst, Mater. Today-Proc., 3 (6), 1582–1591.

[5] Banfield, J.R., and Zhang, H., 2001, Nanoparticles in the environment, Rev. Mineral. Geochem., 44 (1), 1–58.

[6] Feng, X., Wang, Q., Wang, G., and Qui, F., 2006, Preparation of nano-TiO2 by ethanol-thermal method and its catalytic performance for synthesis of dibutyl carbonate by transesterification, Chin. J. Catal., 27 (3), 195–196.

[7] Askari, M.B., Banizi, Z.T., Soltani, S., and Seifi, M., 2018, Comparison of optical properties and photocatalytic behavior of TiO2/MWCNT, CdS/MWCNT and TiO2/CdS/MWCNT nanocomposites, Optik, 157, 230–239.

[8] Wang, F., Shi, Z., Gong, F., Jiu, J., and Adachi, M., 2007, Morphology control of anatase TiO2 by surfactant-assisted hydrothermal method, Chin. J. Chem. Eng., 15 (5), 754–759.

[9] Peng, F., Cai, L., Huang, L., Yu, H., and Wang, H., 2008, Preparation of nitrogen-doped titanium dioxide with visible-light photocatalytic activity using a facile hydrothermal method, J. Phys. Chem. Solids, 69 (7), 1657–1664.

[10] Li, G., Chen, L., Dimitrijevic, N.M., and Gray, K.A., 2008, Visible light photocatalytic properties of anion-doped TiO2 materials prepared from a molecular titanium precursor, Chem. Phys. Lett., 451 (1-3), 75–79.

[11] Zhao, X., Liu, M., and Zhu, Y., 2007, Fabrication of porous TiO2 film via hydrothermal method and its photocatalytic performances, Thin Solid Films, 515 (18), 7127–7134.

[12] Askari, M.B., Banizi, Z.T., Seifi, M., Dehaghi, S.B., and Veisi, P., 2017, Synthesis of TiO2 nanoparticles and decorated multi-wall carbon nanotube (MWCNT) with anatase TiO2 nanoparticles and study of optical properties and structural characterization of TiO2/MWCNT nanocomposite, Optik, 149, 447–454.

[13] Salehi, A., Mashhadi, H.A., Abravi, M.S., and Jafarian, H.R., 2015, An ultrasound assisted method on the formation of nanocrystalline fluorohydroxyapatite coatings on titanium scaffold by dip coating process, Procedia Mater. Sci., 11, 137–141.

[14] Mahadik, S.A., Pedraza, F., and Mahadik, S.S., 2016, Comparative studies on water repellent coatings prepared by spin coating and spray coating methods, Prog. Org. Coat., 104, 217–222.

[15] Karuppuchamy, S., Suzuki, N., Ito, S., and Endo, T., 2009, A novel one-step electrochemical method to obtain crystalline titanium dioxide films at low temperature, Curr. Appl. Phys., 9 (1), 243–248.

[16] Song, W., Wu, X., Qin, W., and Jiang, Z., 2007, TiO2 films prepared by micro-plasma oxidation method for dye-sensitized solar cell, Electrochim. Acta, 53 (4), 1883–1889.

[17] Anicai, L., Petica, A., Patroi, D., Marinescu, V., Prioteasa, P., and Costovici, S., 2015, Electrochemical synthesis of nanosized TiO2 nanopowder involving choline chloride based ionic liquids, Mater. Sci. Eng., B, 199, 87–95.

[18] Kim, B.H., Lee, J.Y., Choa, Y.H., Higuchi, M., and Mizutani, N., 2004, Preparation of TiO2 thin film by liquid sprayed mist CVD method, Mater. Sci. Eng., B, 107 (3), 289–294.

[19] Chernozem, R.V., Surmeneva, M.A., Krause, B., Baumbach, T., Ignatov, V.P., Tyurin, A.I., Loza, K., Epple, M., and Surmenev, R.A., 2017, Hybrid biocomposites based on titania nanotubes and a hydroxyapatite coating deposited by RF-magnetron sputtering: Surface topography, structure, and mechanical properties, Appl. Surf. Sci., 426, 229–237.

[20] Akpan, U.G., and Hameed, B.H., 2010, The advancements in sol–gel method of doped-TiO2 photocatalysts, Appl. Catal., A, 375 (1), 1–11.

[21] Crişan, M., Brăileanu, A., Răileanu, M., Zaharescu, M., Crişan, D., Drăgan, N., Anastasescu, M., Ianculescu, A., Niţoi, I., Marinescu, V.E., and Hodorogea, S.M., 2008, Sol–gel S-doped TiO2 materials for environmental protection, J. Non-Cryst. Solids, 354 (2-9), 705–711.

[22] Shi, J.W., Zheng, J.T., Hu, Y., and Zhao, Y.C., 2007, Influence of Fe3+ and Ho3+ co-doping on the photocatalytic activity of TiO2, Mater. Chem. Phys., 106 (2-3), 247–249.

[23] Saif, M., and Abdel-Mottaleb, M.S.A., 2007, Titanium dioxide nanomaterial doped with trivalent lanthanide ions of Tb, Eu and Sm: Preparation, characterization and potential applications, Inorg. Chim. Acta, 360 (9), 2863–2874.

[24] Fan, X., Chen, X., Zhu, S., Li, Z., Yu, T., Ye, J., and Zou, Z., 2008, The structural, physical and photocatalytic properties of the mesoporous Cr-doped TiO2, J. Mol. Catal. A: Chem., 284 (1-2), 155–160.

[25] Essalhi, Z., Hartiti, B., Lfakir, A., Siadat, M., and Thevenin, P., 2016, Optical properties of TiO2 thin films prepared by sol gel method, J. Mater. Environ. Sci., 7 (4), 1328–1333.

[26] Zhang, H., Chen, J., and Guo, H., 2011, Efficient near-infrared quantum cutting by Ce3+-Yb3+ couple in GdBO3 phosphors, J. Rare Earths, 29 (9), 822–825.

[27] Reszczynska, J., Esteban, D.A., Gazda, M., and Zaleska, A., 2014, Pr-doped TiO2. The effect of metal content on photocatalytic activity, Physicochem. Probl. Miner. Process., 50 (2), 515–524.

[28] Kim, H.S., Li, Y.B., and Lee, S.W., 2006, Nd3+-doped TiO2 nanoparticles prepared by sol-hydrothermal process, Mater. Sci. Forum, 510-511, 122–125.

[29] Li, W., Wang, Y., Lin, H., Shah, S.I., Huang, C.P., Doren, D.J., Rykov, S.A., Chen, J.G., and Barteau, M.A., 2003, Band gap tailoring of Nd3+-doped TiO2 nanoparticles, Appl. Phys. Lett., 83 (20), 4143–4145.

[30] Antić, Ž., Krsmanović, R.M., Nikolić, M.G., Marinović-Cincović, M., Mitrić, M., Polizzi, S., and Dramićanin, M.D., 2012, Multisite luminescence of rare earth doped TiO2 anatase nanoparticles, Mater. Chem. Phys., 135 (2-3), 1064–1069.

[31] Chen, X., and Luo, W., 2010, Optical spectroscopy of rare earth ion-doped TiO2 nanophosphors, J. Nanosci. Nanotechnol., 10 (3), 1482–1494.

[32] Mulwa, W.M., Ouma, C.N.M., Onani, M.O., and Dejene, F.B., 2016, Energetic, electronic and optical properties of lanthanide doped TiO2: An ab initio LDA+U study, J. Solid State Chem., 237, 129–137.

[33] Qianqian, D., Feng, Q., Dan, W., Wei, X., Jianmin, C., Zhiguo, Z., and Wenwu, C., 2011, Quantum cutting mechanism in Tb3+-Yb3+ co-doped oxyfluoride glass, J. Appl. Phys., 110 (11), 113503.

[34] Du, J., Wu, Q., Zhong, S., Gu, X., Liu, J., Guo, H., Zhang, W., Peng, H., and Zou, J., 2015, Effect of hydroxyl groups on hydrophilic and photocatalytic activities of rare earth doped titanium dioxide thin films, J. Rare Earths, 33 (2), 148–153.

[35] Heng, C.L., Wang, T., Su, W.Y., Wu, H.C., Yin, P.G., and Finstad, T.G., 2016, Down-conversion luminescence from (Ce, Yb) co-doped oxygen-rich silicon oxides, J. Appl. Phys., 119 (12), 123105.

[36] van der Kolk, E., Ten Kate, O.M., Wiegman, J.W., Biner, D., and Krämer, K.W., 2011, Enhanced 1G4 emission in NaLaF4: Pr3+, Yb3+ and charge transfer in NaLaF4: Ce3+, Yb3+ studied by Fourier transform luminescence spectroscopy, Opt. Mater., 33 (7), 1024–1027.

[37] Liu, Z., Li, J., Yang, L., Chen, Q., Chu, Y., and Dai, N., 2014, Efficient near infrared quantum cutting in Ce3+- Yb3+codoped glass for solar photovoltaic, Sol. Energy Mater. Sol. Cells, 122, 46–50.

[38] Chen, D., Wang, Y., Yu, Y., Huang, P., and Weng, F., 2008, Quantum cutting down conversion by cooperative energy transfer from Ce3+ to Yb3+ in borate glasses, J. Appl. Phys., 104 (11), 116105.

[39] Haque, F.Z., Nandanwar, R., and Singh, P., 2017, Evaluating photodegradation properties of anatase and rutile TiO2 nanoparticles for organic compounds, Optik, 128, 191–200.

[40] Li, W., Liang, R., Hu, A., Huang, Z., and Zhou, Y.N., 2014, Generation of oxygen vacancies in visible light activated one- dimensional iodine TiO2 photocatalysts, RSC Adv., 4 (70), 36959–36966.

[41] Binas, V.D., Sambani, K., Maggos, T., Katsanaki, A., and Kiriakidis, G., 2012, Synthesis and photocatalytic activity of Mn-doped TiO2 nanostructured powders under UV and visible light, Appl. Catal., B, 113-114, 79–86.

[42] Meddouri, M., Hammiche, L., Slimi, O., Djouadi, D., and Chelouche, A., 2016, Effect of cerium on structural and optical properties of ZnO aerogel synthesized in supercritical methanol, Mater. Sci. Poland, 34 (3), 659–664.

[43] Tong, T., Zhang, J., Tian, B., Chen, E., and He, D., 2008, Preparation and characterization of anatase TiO2 microspheres with porous frameworks via controlled hydrolysis of titanium alkoxide followed by hydrothermal treatment, Mater. Lett., 62 (17-18), 2970–2972.

[44] Zhou, L., Deng, J., Zhao, Y., Liu, W., An, L., and Chen, F., 2009, Preparation and characterization of N-I co-doped nanocrystal anatase TiO2 with enhanced photocatalytic activity under visible-light irradiation, Mater. Chem. Phys., 117 (2-3), 522–529.

[45] Yodyingyong, S., Sae-Kung, C., Panijpan, B., Triampo, W., and Bull, D.T., 2011, Physicochemical properties of nanoparticles titania from alcohol burner calcinations, Bull. Chem. Soc. Ethiop., 25 (2), 263–272.



DOI: https://doi.org/10.22146/ijc.43947

Article Metrics

Abstract views : 2462 | views : 2241


Copyright (c) 2019 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.