Potencial uso de la cáscara y semilla de aguacate como fuente de compuestos bioactivos con actividades funcionales para un desarrollo sustentable.

Palabras clave: agucate, alimento funcional, biorresiduos, compuestos bioactivos, desarrollo sustentable

Resumen

El aguacate es un fruto tropical considerado nativo de América Tropical, Centroamérica y México. A diferencia de otros frutos, es bajo en azúcar y presenta una alta calidad nutricional debido a su contenido de vitaminas, minerales, proteínas, fibra y ácidos grasos insaturados. Además, se caracteriza por la presencia de diversos fitoquímicos, como la luteína, glutatión, β-sitosterol, antioxidantes fenólicos y fitoesteroles. Aunque la cáscara y la semilla del aguacate son consideradas productos de desecho y fuente potencial de contaminación, se ha demostrado que contienen una gran cantidad de fitoquímicos, incluyendo ácidos fenólicos, taninos condensados y flavonoides como procianidinas, flavonoles, ácidos hidroxibenzoico e hidroxicinámico. Se ha evidenciado que la cáscara y la semilla de aguacate poseen propiedades nutracéuticas y funcionales, mostrando potencial como agentes antimicrobianos, antiinflamatorios, anticancerígenos, antidiabéticos, antihipertensivos e inhibidores de reacciones oxidativas. Por lo tanto, el aguacate se considera un alimento funcional debido a los múltiples beneficios que aporta a la salud. La utilización de estos productos de desecho del aguacate no solo aprovecha su potencial nutracéutico, sino que también promueve prácticas en línea con el desarrollo sustentable, contribuyendo así al cuidado del medio ambiente.

 

Descargas

La descarga de datos todavía no está disponible.

Citas

Jimenez, P., Garcia, P., Quitral, V., Vasquez, K., Parra-Ruiz, C., Reyes-Farias, M., ... & Soto-Covasich, J. (2021). Pulp, leaf, peel and seed of avocado fruit: a review of bioactive compounds and healthy benefits. Food Reviews International, 37(6), 619-655.

Athaydes, B. R., Alves, G. M., de Assis, A. L. E. M., Gomes, J. V. D., Rodrigues, R. P., Campagnaro, B. P., & Gonçalves, R. D. C. R. (2019). Avocado seeds (Persea americana Mill.) prevents indomethacin-induced gastric ulcer in mice. Food Research International, 119, 751-760.

Rubí-Arriaga, M., Lozano-Keymolen, D., & Maldonado, F. I. (2019). Población y producción alimentaria en México: el caso del aguacate. Papeles de población, 25(101), 213-241.

Figueroa, J. G., Borrás-Linares, I., Lozano-Sánchez, J., & Segura-Carretero, A. (2018). Comprehensive identification of bioactive compounds of avocado peel by liquid chromatography coupled to ultra-high-definition accurate-mass Q-TOF. Food Chemistry, 245, 707-716.

Salazar-López, N. J., Domínguez-Avila, J. A., Yahia, E. M., Belmonte-Herrera, B. H., Wall-Medrano, A., Montalvo-González, E., & González-Aguilar, G. A. (2020). Avocado fruit and by-products as potential sources of bioactive compounds. Food Research International, 138, 109774

Velderrain-Rodríguez, G. R., Salvia-Trujillo, L., González-Aguilar, G. A., & Martín-Belloso, O. (2021). Interfacial activity of phenolic-rich extracts from avocado fruit waste: Influence on the colloidal and oxidative stability of emulsions and nanoemulsions. Innovative Food Science & Emerging Technologies, 69, 102665.

Melgar, B., Dias, M. I., Ciric, A., Sokovic, M., Garcia-Castello, E. M., Rodriguez-Lopez, A. D., ... & Ferreira, I. C. (2018). Bioactive characterization of Persea americana Mill. by-products: A rich source of inherent antioxidants. Industrial Crops and Products, 111, 212-218.

Lu, Q.-Y., Arteaga, J. R., Zhang, Q., Huerta, S., Go, V. L. W., & Heber, D. (2005). 509 Inhibition of prostate cancer cell growth by an avocado extract: role of lipid510 soluble bioactive substances. The Journal of Nutritional Biochemistry, 16, 23–30.

Tango, J. S., Carvalho, C. R. L., & Soares, N. B. (2004). Caracterização física e química de frutos de abacate visando a seu potencial para extração de óleo. Revista Brasileira de Fruticultura, 26(1), 17-23.

Gondim, J. A. M.; Moura, M. D. F. V.; Dantas, A. S.; Medeiros, R. L. S.; Santos, K. M. Composição Centesimal E De Minerais Em Cascas De Frutas. Ciência E Tecnol. Aliment. 2005, 25(4), 825–827.

Tremocoldi, M. A., Rosalen, P. L., Franchin, M., Massarioli, A. P., Denny, C., Daiuto, É. R., ... & Alencar, S. M. D. (2018). Exploration of avocado by-products as natural sources of bioactive compounds. PloS one, 13(2), e0192577.

Soong, Y.-Y.; Barlow, P. J. Antioxidant activity and phenolic content of selected fruit seeds. Food Chem. 2004, 88, 411−417.

Rodríguez-Carpena, JG, Morcuende, D., Andrade, MJ, Kylli, P., & Estévez, M. (2011). Fenólicos del aguacate (Persea americana Mill.), actividades antioxidantes y antimicrobianas in vitro e inhibición de la oxidación de lípidos y proteínas en hamburguesas porcinas. Revista de química agrícola y alimentaria , 59 (10), 5625-5635.

Kosińska, A., Karamać, M., Estrella, I., Hernández, T., Bartolomé, B., & Dykes, G. A. 505 (2012). Phenolic compound profiles and antioxidant capacity of Persea americana 506 Mill. peels and seeds of two varieties. Journal of Agricultural and Food Chemistry, 507 60(18), 4613–4619.

López-Cobo, A., Gómez-Caravaca, A. M., Pasini, F., Caboni, M. F., Segura-Carretero, A., & Fernández-Gutiérrez, A. (2016). HPLC-DAD-ESI-QTOF-MS and HPLC-FLD-MS as valuable tools for the determination of phenolic and other polar compounds in the edible part and by-products of avocado. LWT, 73, 505-513.

Fulgoni, V. L., Dreher, M., & Davenport, A. J. (2013). Avocado consumption is associated with better diet quality and nutrient intake, and lower metabolic syndrome risk in US adults: results from the National Health and Nutrition Examination Survey (NHANES) 2001–2008. Nutrition journal, 12(1), 1-6.

Owolabi, M. A.; Coker, H. A. B.; Jaja, S. I. Bioactivity of the Phytoconstituents of the Leaves of Persea Americana. J. Med. Plants Res. 2010, 4(12), 1130–1135. DOI: 10.5897/JMPR09.429

Kris-Etherton, PM, Hecker, KD, Bonanome, A., Coval, SM, Binkoski, AE, Hilpert, KF, ... & Etherton, TD (2002). Compuestos bioactivos en los alimentos: su papel en la prevención de enfermedades cardiovasculares y cáncer. La revista americana de medicina , 113 (9), 71-88.

Adeyemi, O. O., Okpo, S. O., & Ogunti, O. O. (2002). Analgesic and anti-inflammatory effects of the aqueous extract of leaves of Persea americana Mill (Lauraceae). Fitoterapia, 73(5), 375-380.

Ding, H., Chin, Y. W., Kinghorn, A. D., & D’Ambrosio, S. M. (2007). 466 Chemopreventive characteristics of avocado fruit. Seminars in Cancer Biology, 17, 467 386–394.

Murakami, Y., Kawata, A., Ito, S., Katayama, T., & Fujisawa, S. (2015). Radical-scavenging and anti-inflammatory activity of quercetin and related compounds and their combinations against RAW264. 7 cells stimulated with Porphyromonas gingivalis fimbriae. Relationships between anti-inflammatory activity and quantum chemical parameters. In vivo, 29(6), 701-710.

Pahua-Ramos, M. E., Ortiz-Moreno, A., Chamorro-Cevallos, G., Hernández-Navarro, M. D., Garduño-Siciliano, L., Necoechea-Mondragón, H., & Hernández-Ortega, M. (2012). Hypolipidemic effect of avocado (Persea americana Mill) seed in a hypercholesterolemic mouse model. Plant foods for human nutrition, 67(1), 10-16.

Asaolu, M. F., Asaolu, S. S., Fakunle, J. B., Emman-Okon, B. O., Ajayi, E. O., & Togun, R. A. (2010). Evaluation of in-vitro antioxidant activities of methanol extracts of Persea americana and Cnidosculus aconitifolius.

Edem, D. O., Ekanem, I. S., & Ebong, P. E. (2009). Effect of aqueous extracts of alligator pear seed (Persea americana mill) on blood glucose and histopathology of pancreas in alloxan-induced diabetic rats. Pakistan Journal of Pharmaceutical Sciences, 22(3).

Bonilla-Porras, A. R., Salazar-Ospina, A., Jimenez-Del-Rio, M., Pereañez-Jimenez, A., & Velez-Pardo, C. (2014). Pro-apoptotic effect of Persea americana var. Hass (avocado) on Jurkat lymphoblastic leukemia cells. Pharmaceutical biology, 52(4), 458-465.

Oboh, G.; Isaac, A. T.; Akinyemi, A. J.; Ajani, R. A. Inhibition of Key Enzymes Linked to Type 2 Diabetes and Sodium Nitroprusside Induced Lipid Peroxidation in Rats’ Pancreas by Phenolic Extracts of Avocado Pear Leaves and Fruit. Int. J. Biomed. Sci. 2014, 10(3), 208–216.

Ekor, M., Adepoju, G. K. A., & Epoyun, A. A. (2006). Protective effect of the methanolic leaf extract of Persea americana (avocado) against paracetamol-induced acute hepatotoxicity in rats. International Journal of Pharmacology, 2(4), 416-420.

Araújo, RG, Rodríguez-Jasso, RM, Ruiz, HA, Pintado, MME, & Aguilar, CN (2018). Subproductos del aguacate: propiedades nutricionales y funcionales. Tendencias en ciencia y tecnología de los alimentos , 80 , 51-60.

Olaeta, J. A. (2003). Industrialización del aguacate: estado actual y perspectivas futuras. In Proceedings V World Avocado Congress (Vol. 1, pp. 749-754).

Dreher ML, Davenport AJ. Hass avocado composition and potential health effects. Crit Rev Food Sci Nutr. 2013;53(7):738-750.

Publicado
2023-07-05
Cómo citar
Zaldivar-Ortega, A. K., Barrera-Jiménez , J. A., Cenobio-Galindo , A. de J., Pérez-Soto , E., Franco-Fernández , M. J., & Campos-Montiel, R. G. (2023). Potencial uso de la cáscara y semilla de aguacate como fuente de compuestos bioactivos con actividades funcionales para un desarrollo sustentable. Boletín De Ciencias Agropecuarias Del ICAP, 9(18), 30-33. https://doi.org/10.29057/icap.v9i18.9058

Artículos más leídos del mismo autor/a