Revisión de compositos de biocerámicas y biopolímeros mediante electrohilado para su uso potencial como andamios para la sustitución de piel

Palabras clave: andamios, piel, membranas, biopolímero, compuestos

Resumen

El estado del arte que comprende los materiales compósitos para andamiajes de piel, que están conformados por nano y microfibras de polímeros con propiedades biocompatibles, que son fabricadas mediante técnicas de electro-spinning que les permiten adquirir una estructura jerárquica muy similar a la que naturalmente posee el tejido dérmico. La creación de membranas solidas basadas en biocerámicas como fase dispersa en biopolímeros es una opción viable en el tratamiento de heridas crónico-degenerativas como el pie diabético, así como también en la atención de laceraciones por agentes externos como quemaduras y abrasiones; gracias a que sus propiedades no se limitan a la biocompatibilidad, sino que hacen uso tanto de su estructura conde su composición química para generar y promover la migración y crecimiento celular. En esta revisión se da un panorama general de los andamios de membranas compósitas y su importancia en un mercado global creciente que demanda nuevos y mejores materiales para el cuidado de heridas en la piel.

Descargas

La descarga de datos todavía no está disponible.

Citas

References

Sen, C. K. (2021). Human wound and its burden: updated 2020 compendium of estimates. advances in wound care, 10(5), 281-292.

Boulton, A. J., Armstrong, D. G., Kirsner, R. S., Attinger, C. E., Lavery, L. A., Lipsky, B. A., ... & Steinberg, J. S. (2018). Diagnosis and management of diabetic foot complications. Compendia, 2018(2).

Fortune Business Insigths. (2022). Research and Markets. (2022). Global Wound Care Market Size, Share & Trends Analysis Report by Product (Advanced, Surgical, Traditional), by Application (Chronic Wounds, Acute Wounds), by End-use (Hospitals, Specialty Clinics), by Region, and Segment Forecasts, 2022-2030. 28 de Julio del 2022, de Fortune Business Insights..

Sen, C. K., Gordillo, G. M., Roy, S., Kirsner, R., Lambert, L., Hunt, T. K., ... & Longaker, M. T. (2009). Human skin wounds: a major and snowballing threat to public health and the economy. Wound repair and regeneration, 17(6), 763-771.

Zhao, H., Liu, M., Zhang, Y., Yin, J., & Pei, R. (2020). Nanocomposite hydrogels for tissue engineering applications. Nanoscale, 12(28), 14976-14995

Maurya, A. K., & Mishra, N. (2022). Smart Polymeric Biomaterials in Tissue Engineering. In Tissue Engineering (pp. 59-88). Apple Academic Press.

Graham, H. K., Eckersley, A., Ozols, M., Mellody, K. T., & Sherratt, M. J. (2019). Human skin: composition, structure and visualisation methods. In Skin Biophysics (pp. 1-18). Springer, Cham.

Cañedo-Dorantes, L., & Cañedo-Ayala, M. (2019). Skin acute wound healing: a comprehensive review. International journal of inflammation, 2019.

Blair, M. J., Jones, J. D., Woessner, A. E., & Quinn, K. P. (2020). Skin structure–function relationships and the wound healing response to intrinsic aging. Advances in wound care, 9(3), 127-143.

Liu, Y., Zhou, S., Gao, Y., & Zhai, Y. (2019). Electrospun nanofibers as a wound dressing for treating diabetic foot ulcer. Asian Journal of Pharmaceutical Sciences, 14(2), 130-143.

Piamo, A., García, M., Romero, D., & Ferrer, D. (2022). Curación de úlcera venosa crónica de la pierna con aloinjerto de membrana amniocoriónica humana fresca. Biomédica, 42(Sp. 1), 17-25.

Ahmed Mohamed, A. (2022). Tratamiento de lesiones del nervio dentario inferior: revisión sistemática y propuesta de un modelo microquirúrgico con xenoinjerto y láser de bajo nivel en conejos.

Palomino-Cabrera, A., Cruz-González, M., & Rodríguez-Santallana, I. (2022). Autoinjerto de piel con aplicación de lisado de plaquetas homólogo en la alogenosis iatrogénica. Informe de un caso. 16 de Abril, 61(284), 1461

Song, Y., Choi, J. H., Tumursukh, N. E., Kim, N. E., Jeon, G. Y., Kim, S. E., ... & Khang, G. (2022). Macro-and microporous polycaprolactone/duck’s feet collagen scaffold fabricated by combining facile phase separation and particulate leaching techniques to enhance osteogenesis for bone tissue engineering. Journal of Biomaterials Science, Polymer Edition, 1-18.

Shirehjini, L. M., Sharifi, F., Shojaei, S., & Irani, S. (2022). Poly-caprolactone nanofibrous coated with sol-gel alginate/mesenchymal stem cells for cartilage tissue engineering. Journal of Drug Delivery Science and Technology, 74, 103488.

Gao, X., Wen, M., Liu, Y., Hou, T., & An, M. (2022). Mechanical performance and cyocompatibility of PU/PLCL nanofibrous electrospun scaffolds for skin regeneration. Engineered Regeneration, 3(1), 53-58.

Ji, C., Annabi, N., Hosseinkhani, M., Sivaloganathan, S., & Dehghani, F. (2012). Fabrication of poly-DL-lactide/polyethylene glycol scaffolds using the gas foaming technique. Acta biomaterialia, 8(2), 570-578.

Luo, M., Winston, D. D., Niu, W., Wang, Y., Zhao, H., Qu, X., & Lei, B. (2022). Bioactive therapeutics-repair-enabled citrate-iron hydrogel scaffolds for efficient post-surgical skin cancer treatment. Chemical Engineering Journal, 431, 133596.

Masri, S., Zawani, M., Zulkiflee, I., Salleh, A., Fadilah, N. I. M., Maarof, M., ... & Fauzi, M. B. (2022). Cellular Interaction of Human Skin Cells towards Natural Bioink via 3D-Bioprinting Technologies for Chronic Wound: A Comprehensive Review. International Journal of Molecular Sciences, 23(1), 476.

Flament, F., Francois, G., Qiu, H., Ye, C., Hanaya, T., Batisse, D., ... & Bazin, R. (2015). Facial skin pores: a multiethnic study. Clinical, cosmetic and investigational dermatology, 8, 85.

Wu, S., Dong, T., Li, Y., Sun, M., Qi, Y., Liu, J., ... & Duan, B. (2022). State-of-the-art review of advanced electrospun nanofiber yarn-based textiles for biomedical applications. Applied Materials Today, 27, 101473.

de Melo, B. A., Jodat, Y. A., Cruz, E. M., Benincasa, J. C., Shin, S. R., & Porcionatto, M. A. (2020). Strategies to use fibrinogen as bioink for 3D bioprinting fibrin-based soft and hard tissues. Acta Biomaterialia, 117, 60-76.

Loo, C. P., & Sarbon, N. M. (2020). Chicken skin gelatin films with tapioca starch. Food Bioscience, 35, 100589.

Lee, H., Kim, M. J., Seong, K. Y., Jeong, J. S., Kim, S. Y., Jung, E. M., ... & An, B. S. (2022). Dissolving biopolymer microneedle patches for the improvement of skin elasticity. Journal of Industrial and Engineering Chemistry.

Powell, H. M., & Boyce, S. T. (2006). EDC cross-linking improves skin substitute strength and stability. Biomaterials, 27(34), 5821-5827.

Safari, B., Aghazadeh, M., Davaran, S., & Roshangar, L. (2022). Exosome-loaded hydrogels: a new cell-free therapeutic approach for skin regeneration. European Journal of Pharmaceutics and Biopharmaceutics, 171, 50-59.

Xu, T., Liu, K., Sheng, N., Zhang, M., Liu, W., Liu, H., ... & Zhang, K. (2022). Biopolymer-based hydrogel electrolytes for advanced energy storage/conversion devices: properties, applications, and perspectives. Energy Storage Materials.

Qi, Y.; Zhai, H.; Sun, Y.; Xu, H.; Wu, S.; Chen, S. Electrospun hybrid nanofibrous meshes with adjustable performance for potential use in soft tissue engineering. Text. Res. J. 2021.

Liu, Y.; Li, T.; Han, Y.; Li, F.; Liu, Y. Recent development of electrospun wound dressing. Curr. Opin. Biomed. Eng. 2021, 17, 100247.

Saudi, A., Zebarjad, S. M., Salehi, H., Katoueizadeh, E., & Alizadeh, A. (2022). Assessing physicochemical, mechanical, and in vitro biological properties of polycaprolactone/poly(glycerolsebacate)/hydroxyapatite composite scaffold for nerve tissue engineering. Materials Chemistry and Physics, 275, 125224.

Jana, S., Datta, P., Das, H., Ghosh, P. R., Kundu, B., & Nandi, S. K. (2022). Engineering Vascularizing Electrospun Dermal Grafts by Integrating Fish Collagen and Ion-Doped Bioactive Glass. ACS Biomaterials Science & Engineering, 8(2), 734-752..

Ranjbarvan, P., Golchin, A., Azari, A., & Niknam, Z. (2022). The bilayer skin substitute based on human adipose-derived mesenchymal stem cells and neonate keratinocytes on the 3D nanofibrous PCL-platelet gel scaffold. Polymer Bulletin, 79(6), 4013-4030.

Xiang, J., Zhou, L., Xie, Y., Zhu, Y., Xiao, L., Chen, Y., ... & Guo, L. (2022). Mesh-like electrospun membrane loaded with atorvastatin facilitates cutaneous wound healing by promoting the paracrine function of mesenchymal stem cells. Stem cell research & therapy, 13(1), 1-17.

Rodríguez-Lugo, V., Salado-Leza, D. E., Ortiz, S. L., Mendoza-Anaya, D., Villaseñor-Cerón, L. S., & Reyes-Valderrama, M. I. (2020). Revisión de la Hidroxiapatita Nanoestructurada como Alternativa para Tratamiento de Cáncer. Pädi Boletín Científico de Ciencias Básicas e Ingenierías Del ICBI, 8(Especial), 115-127.

Villaseñor-Cerón, L. S., Reyes-Valderrama, M. I., López-Ortiz, S., Salinas-Rodríguez, E., & Rodriguez-Lugo, V. (2021). El pH como parámetro en la síntesis de hidroxiapatita y cloroapatita a partir del método hidrotermal asistido por microondas. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 9(Especial2), 34-40.

Zhang, P.; Li, Y.; Tang, Y.; Shen, H.; Li, J.; Yi, Z.; Ke, Q.; Xu, H. Copper-Based Metal-Organic Framework as a Controllable Nitric Oxide-Releasing Vehicle for Enhanced Diabetic Wound Healing. ACS Appl. Mater. Interfaces 2020, 12, 18319–18331.

Elshazly, N.; Khalil, A.; Saad, M.; Patruno, M.; Chakraborty, J.; Marei, M. Efficacy of Bioactive Glass Nanofibers Tested for Oral Mucosal Regeneration in Rabbits with Induced Diabetes. Materials 2020, 13, 2603.

Augustine, R.; Hasan, A.; Patan, N.K.; Dalvi, Y.B.; Varghese, R.; Antony, A.; Unni, R.N.; Sandhyarani, N.; Moustafa, A.A. Cerium Oxide Nanoparticle Incorporated Electrospun Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Membranes for Diabetic Wound Healing Applications. ACS Biomater. Sci. Eng. 2020, 6, 58–70.

Zhang, Z., Zhang, Y., Li, W., Ma, L., Wang, E., Xing, M., ... & Chang, J. (2021). Curcumin/Fe-SiO2 nano composites with multi-synergistic effects for scar inhibition and hair follicle regeneration during burn wound healing. Applied Materials Today, 23, 101065.

Muthulakshmi, L., Prabakaran, S., Ramalingam, V., Rajulu, A. V., Rajan, M., Ramakrishna, S., & Luo, H. (2022). Sodium alginate nanofibers loaded Terminalia catappa scaffold regulates intrinsic apoptosis signaling in skin melanoma cancer. Process Biochemistry, 118, 92-102.

Bahadoran, M., Shamloo, A., & Nokoorani, Y. D. (2020). Development of a polyvinyl alcohol/sodium alginate hydrogel-based scaffold incorporating bFGF-encapsulated microspheres for accelerated wound healing. Scientific reports, 10(1), 1-18.

Gonçalves, M. M., Lobsinger, K. L., Carneiro, J., Picheth, G. F., Pires, C., Saul, C. K., ... & Pontarolo, R. (2022). Morphological study of electrospun chitosan/poly (vinyl alcohol)/glycerol nanofibres for skin care applications. International Journal of Biological Macromolecules, 194, 172-178.

Yang, X.; Chen, M.; Li, P.; Ji, Z.; Wang, M.; Feng, Y.; Shi, C. Fabricating poly(vinyl alcohol)/gelatin composite sponges with high absorbency and water-triggered expansion for noncompressible hemorrhage and wound healing. J. Mat. Chem. B 2021, 9, 1568–1582.

Antony, R., Arun, T., & Manickam, S. T. D. (2019). A review on applications of chitosan-based Schiff bases. International journal of biological macromolecules, 129, 615-633

Samadian, H., Salehi, M., Farzamfar, S., Vaez, A., Ehterami, A., Sahrapeyma, H., ... & Ghorbani, S. (2018). In vitro and in vivo evaluation of electrospun cellulose acetate/gelatin/hydroxyapatite nanocomposite mats for wound dressing applications. Artificial cells, nanomedicine, and biotechnology, 46(sup1), 964-974.

Ghorbanzadeh Sheish, S., Emadi, R., Ahmadian, M., Sadeghzade, S., & Tavangarian, F. (2021). Fabrication and characterization of polyvinylpyrrolidone-eggshell membrane-reduced graphene oxide nanofibers for tissue engineering applications. Polymers, 13(6), 913.

Mohseni, M., Delavar, F., & Rezaei, H. (2021). The piezoelectric gel-fiber-particle substrate containing short PVDF-chitosan-gelatin nanofibers and mesoporous silica nanoparticles with enhanced antibacterial activity as a potential of wound dressing applications. Journal of Macromolecular Science, Part A, 58(10), 694-708

Elsayed, M. T., Hassan, A. A., Abdelaal, S. A., Taher, M. M., khalaf Ahmed, M., & Shoueir, K. R. (2020). Morphological, antibacterial, and cell attachment of cellulose acetate nanofibers containing modified hydroxyapatite for wound healing utilizations. Journal of Materials Research and Technology, 9(6), 13927-13936.

Mutuk, T., & Gürbüz, M. (2021). Graphene/chitosan/Ag+-doped hydroxyapatite triple composite fiber coatings on new generation hybrid titanium composite by electrospinning. Journal of Composite Materials, 55(22), 3087-3097.

Su, C., Lu, C., Horseman, T., Cao, H., Duan, F., Li, L., ... & Li, Y. (2020). Dilute solvent welding: A quick and scalable approach for enhancing the mechanical properties and narrowing the pore size distribution of electrospun nanofibrous membrane. Journal of Membrane Science, 595, 117548.

Bagherzadeh, R., Najar, S. S., Latifi, M., Tehran, M. A., & Kong, L. (2013). A theoretical analysis and prediction of pore size and pore size distribution in electrospun multilayer nanofibrous materials. Journal of Biomedical Materials Research Part A, 101(7), 2107-2117.

Rodríguez-Tobías, H., Morales, G., & Grande, D. (2019). Comprehensive review on electrospinning techniques as versatile approaches toward antimicrobial biopolymeric composite fibers. Materials Science and Engineering: C, 101, 306-322.

Posada, J. C., & Montes-Florez, E. (2022). Revisión: materiales poliméricos biodegradables y su aplicación en diferentes sectores industriales. Informador Técnico, 86(1), 94-110

Behrens, M. R., & Ruder, W. C. (2021). Biopolymers in Regenerative Medicine: Overview, Current Advances, and Future Trends. Biopolymers for Biomedical and Biotechnological Applications, 357-380.

Zhu, Y. and Wagner, W.R. (2019). Design principles in biomaterials and scaffolds. In: Principles of Regenerative Medicine (Third Edition) (eds. A. Atala, R. Lanza, A.G. Mikos and R. Nerem), 505–522. Boston: Academic Press.

Liu, M., Wang, R., Liu, J., Zhang, W., Liu, Z., Lou, X., ... & Wu, J. (2021). Incorporation of magnesium oxide nanoparticles into electrospun membranes improves pro-angiogenic activity and promotes diabetic wound healing. Materials Science and Engineering: C, 112609

Perez-Amodio, S., Rubio, N., Vila, O. F., Navarro-Requena, C., Castaño, O., Sanchez-Ferrero, A., ... & Engel, E. (2021). Polymeric composite dressings containing calcium-releasing nanoparticles accelerate wound healing in diabetic mice. Advances in Wound Care, 10(6), 301-316.

Mazzoni, E., Iaquinta, M. R., Lanzillotti, C., Mazziotta, C., Maritati, M., Montesi, M., ... & Martini, F. (2021). Bioactive materials for soft tissue repair. Frontiers in bioengineering and biotechnology, 9, 94.

Norris, E.; Ramos-Rivera, C.; Poologasundarampillai, G.; Clark, J.P.; Ju, Q.; Obata, A.; Hanna, J.V.; Kasuga, T.; Mitchell, C.A.; Jell, G. Electrospinning 3D bioactive glasses for wound healing. Biomed. Mater. 2020, 15, 015014.

Zhang, P.; Jiang, Y.; Liu, D.; Liu, Y.; Ke, Q.; Xu, H. A bioglass sustained-release scaffold with ECM-like structure for enhanced diabetic wound healing. Nanomedicine 2020, 15, 2241–2253.

Medeiros, E. L., Gomes, D. S., Santos, A. M., Vieira, R. H., de Lima, I. L., Rocha, F. S., ... & Menezes, R. R. (2021). 3D nanofibrous bioactive glass scaffolds produced by one-step spinning process. Ceramics International, 47(1), 102-110.

Donya, H., Darwesh, R., & Ahmed, M. K. (2021). Morphological features and mechanical properties of nanofibers scaffolds of polylactic acid modified with hydroxyapatite/CdSe for wound healing applications. International Journal of Biological Macromolecules, 186, 897-908.

El-Naggar, M. E., Alharthi, S., Saleh, D. I., El-Sayed, W. A., Abu-Saied, M. A., & Ahmed, M. K. (2021). Thallium/vanadate co-substitutions through hydroxyapatite/polycaprolactone nanofibrous scaffolds for biomedical domains. Materials Chemistry and Physics, 271, 124879

Lv, F., Wang, J., Xu, P., Han, Y., Ma, H., Xu, H., ... & Wu, C. (2017). A conducive bioceramic/polymer composite biomaterial for diabetic wound healing. Acta Biomaterialia, 60, 128-143.

Zhang, Z., Li, W., Liu, Y., Yang, Z., Ma, L., Zhuang, H., ... & Chang, J. (2021). Design of a biofluid-absorbing bioactive sandwich-structured Zn–Si bioceramic composite wound dressing for hair follicle regeneration and skin burn wound healing. Bioactive materials, 6(7), 1910-1920

Gul, H., Khan, M., & Khan, A. S. (2020). Bioceramics: Types and clinical applications. In Handbook of Ionic Substituted Hydroxyapatites (pp. 53-83). Woodhead Publishing.

Liu, D., Zhang, C., Dong, G., Xu, C., Liu, D., Lv, Y., ... & Wang, B. (2018). Temperature-controlled electrospinning of EVOH nanofibre mats encapsulated with Ag, CuO, and ZnO particles for skin wound dressing. Materials Research Express, 6(1), 015007.

Li, B., Bian, X., Hu, W., Wang, X., Li, Q., Wang, F., ... & Fu, X. (2020). Regenerative and protective effects of calcium silicate on senescent fibroblasts induced by high glucose. Wound Repair and Regeneration, 28(3), 315-325.

Granados, S., Alcalde, C., Guzman, J., Melendez, D., Torres, C., & Velasquez, Z. (2022). Cementos a base de silicato de calcio: factor clave en el éxito del recubrimiento pulpar directo. Revisión de la literatura. Revista Estomatológica Herediana, 32(1), 52-60.

Han, F., Li, T., Li, M., Zhang, B., Wang, Y., Zhu, Y., & Wu, C. (2023). Nano-calcium silicate mineralized fish scale scaffolds for enhancing tendon-bone healing. Bioactive Materials, 20, 29-40.

Sánchez-Campos, D., Reyes Valderrama, M. I., López-Ortíz, S., Salado-Leza, D., Fernández-García, M. E., Mendoza-Anaya, D., E. Salinas-Rodríguez & Rodríguez-Lugo, V. (2021). Modulated Monoclinic Hydroxyapatite: The Effect of pH in the Microwave Assisted Method. Minerals, p.p, 1-13, 11(3), 314.

Rodríguez-Lugo, V., Karthik, T. V. K., Mendoza-Anaya, D., Rubio-Rosas, E., Cerón, L. V., Reyes-Valderrama, M. I., & Salinas-Rodríguez, E. (2018). Wet chemical synthesis of nanocrystalline hydroxyapatite flakes: effect of pH and sintering temperature on structural and morphological properties. Royal Society open science, 5(8), 180962 8.

Mazzoni, E., Iaquinta, M. R., Lanzillotti, C., Mazziotta, C., Maritati, M., Montesi, M., ... & Martini, F. (2021). Bioactive materials for soft tissue repair. Frontiers in bioengineering and biotechnology, 9, 613787.

Sánchez-Campos, D., Salado-Leza, D., Pérez-López, J. E., Rodríguez-Lugo, V., & Mendoza-Anaya, D. (2022). Curiosidades e implicaciones tecnológicas de la hidroxiapatita sintética. Pädi Boletín Científico de Ciencias Básicas e Ingenierías del ICBI.

Rodríguez-Lugo, V., Salinas-Rodríguez, E., Vázquez, R. A., Alemán, K., & Rivera, A. L. (2017). Hydroxyapatite synthesis from a starfish and β-tricalcium phosphate using a hydrothermal method. RSC advances, 7(13), 7631-7639.

Cerón, L. V., Lugo, V. R., Alatorre, J. A., Fernández-Garcia, M. E., Reyes-Valderrama, M. I., González-Martínez, P., & Anaya, D. M. (2019). Characterization of hap nanostructures doped with AgNp and the gamma radiation effects. Results in Physics, 15, 102702.

Sánchez-Campos, D., Mendoza-Anaya, D., Reyes-Valderrama, M. I., Esteban-Gómez, S., & Rodríguez-Lugo, V. (2020). Cationic surfactant at high pH in microwave HAp synthesis. Materials Letters, 265, 127416.

López-Ortiz, S., Mendoza-Anaya, D., Sánchez-Campos, D., Fernandez-García, M. E., Salinas-Rodríguez, E., Reyes-Valderrama, M. I., & Rodríguez-Lugo, V. (2020). The pH effect on the growth of hexagonal and monoclinic hydroxyapatite synthesized by the hydrothermal method. Journal of Nanomaterials, 2020.

Ortiz, S. L., Lugo, V. R., Salado-Leza, D., Reyes-Valderrama, M. I., Alcántara-Quintana, L. E., González-Martínez, P., & Anaya, D. M. (2021). Dy2O3-unpurified hydroxyapatite: a promising thermoluminescent sensor and biomimetic nanotherapeutic. Applied Physics A, 127(12), 1-13.

Luginina, M., Schuhladen, K., Orrú, R., Cao, G., Boccaccini, A. R., & Liverani, L. (2020). Electrospun PCL/PGS composite fibers incorporating bioactive glass particles for soft tissue engineering applications. Nanomaterials, 10(5), 978.

Solanki, A. K., Lali, F. V., Autefage, H., Agarwal, S., Nommeots-Nomm, A., Metcalfe, A. D., ... & Jones, J. R. (2021). Bioactive glasses and electrospun composites that release cobalt to stimulate the HIF pathway for wound healing applications. Biomaterials research, 25(1), 1-16

Wang, J., Cai, N., Chan, V., Zeng, H., Shi, H., Xue, Y., & Yu, F. (2021). Antimicrobial hydroxyapatite reinforced-polyelectrolyte complex nanofibers with long-term controlled release activity for potential wound dressing application. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 624, 126722.

Shahhosseininia, M.; Bazgir, S.; Joupari, M.D. Fabrication and investigation of silica nanofibers via electrospinning. Mater. Sci. Eng. C 2018, 91, 502–511

Garibay-Alvarado, J.A.; Herrera-Ríos, E.B.; Vargas-Requena, C.L.; de Jesús Ruíz-Baltazar, Á.; Reyes-López, S.Y. Cell behavior on silica-hydroxyapatite coaxial composite. PLoS ONE 2021, 16, e0246256.

Wan, M.; Zhao, H.; Peng, L.; Zhao, Y.; Sun, L. Facile One-Step Deposition of Ag Nanoparticles on SiO2 Electrospun Nanofiber Surfaces for Label-Free SERS Detection and Antibacterial Dressing. ACS Appl. Bio. Mater. 2021

Saha, S.; Bhattacharjee, A.; Rahaman, S.H.; Ray, S.; Marei, M.K.; Jain, H.; Chakraborty, J. Prospects of antibacterial bioactive glass nanofibers for wound healing: An in vitro study. Int. J. Appl. Glass Sci. 2020, 11, 320–328.

Didekhani, R., Sohrabi, M. R., Seyedjafari, E., Soleimani, M., & Hanaee-Ahvaz, H. (2018). Electrospun composite PLLA/Oyster shell scaffold enhances proliferation and osteogenic differentiation of stem cells. Biologicals, 54, 33-38.

Zhao, S., Li, L., Wang, H., Zhang, Y., Cheng, X., Zhou, N., ... & Zhang, C. (2015). Wound dressings composed of copper-doped borate bioactive glass microfibers stimulate angiogenesis and heal full-thickness skin defects in a rodent model. Biomaterials, 53, 379-391.

Sharaf, S. S., El-Shafei, A. M., Refaie, R., Gibriel, A. A., & Abdel-Sattar, R. (2022). Antibacterial and wound healing properties of cellulose acetate electrospun nanofibers loaded with bioactive glass nanoparticles; in-vivo study. Cellulose, 29(8), 4565-4577.

Grip, J.; Engstad, R.E.; Skjaeveland, I.; Skalko-Basnet, N.; Isaksson, J.; Basnet, P.; Holsaeter, A.M. Beta-glucan-loaded nanofiber dressing improves wound healing in diabetic mice. Eur. J. Pharm. Sci. 2018, 121, 269–280.

Jiang, Y.; Li, Y.; Li, J.; Han, Y.; Zhang, P.; Yi, Z.; Ke, Q.; Xu, H. A Mussel-Inspired Extracellular Matrix-Mimicking Composite Scaffold for Diabetic Wound Healing. ACS Appl. Bio Mater. 2020, 3, 4052–4061.

Chen, Q.; Wu, J.; Liu, Y.; Li, Y.; Zhang, C.; Qi, W.; Yeung, K.W.K.; Wong, T.M.; Zhao, X.; Pan, H. Electrospun chitosan/PVA/bioglass Nanofibrous membrane with spatially designed structure for accelerating chronic wound healing. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 105, 110083.

Ahmed, R., Tariq, M., Ali, I., Asghar, R., Khanam, P. N., Augustine, R., & Hasan, A. (2018). Novel electrospun chitosan/polyvinyl alcohol/zinc oxide nanofibrous mats with antibacterial and antioxidant properties for diabetic wound healing. International journal of biological macromolecules, 120, 385-393.

Hassan, A. A., Radwan, H. A., Abdelaal, S. A., Al-Radadi, N. S., Ahmed, M. K., Shoueir, K. R., & Hady, M. A. (2021). Polycaprolactone based electrospun matrices loaded with Ag/hydroxyapatite as wound dressings: Morphology, cell adhesion, and antibacterial activity. International journal of pharmaceutics, 593, 120143.

Ghiyasi, Y., Salahi, E., & Esfahani, H. (2021). Synergy effect of Urtica dioica and ZnO NPs on microstructure, antibacterial activity and cytotoxicity of electrospun PCL scaffold for wound dressing application. Materials Today Communications, 26, 102163.

El-Naggar, M. E., Ali, O. A. A., Saleh, D. I., Abu-Saied, M. A., Ahmed, M. K., Abdel-Fattah, E., ... & Kenawy, E. R. (2021). Facile modification of polycaprolactone nanofibers with hydroxyapatite doped with thallium ions for wound and mucosal healing applications. Journal of Materials Research and Technology, 15, 2909-2917.

Sergi, R., Cannillo, V., Boccaccini, A. R., & Liverani, L. (2020). Incorporation of bioactive glasses containing Mg, Sr, and Zn in electrospun PCL fibers by using benign solvents. Applied Sciences, 10(16), 5530.

Lima, T. D. P. D. L., & Passos, M. F. (2021). Skin wounds, the healing process, and hydrogel-based wound dressings: a short review. Journal of Biomaterials Science, Polymer Edition, 32(14), 1910-1925.

Chaudhari, A. A., Vig, K., Baganizi, D. R., Sahu, R., Dixit, S., Dennis, V., ... & Pillai, S. R. (2016). Future prospects for scaffolding methods and biomaterials in skin tissue engineering: a review. International journal of molecular sciences, 17(12), 1974.

Pant, B., Park, M., & Park, S. J. (2019). Drug delivery applications of core-sheath nanofibers prepared by coaxial electrospinning: a review. Pharmaceutics, 11(7), 305.

Veerasubramanian, P. K., Thangavel, P., Kannan, R., Chakraborty, S., Ramachandran, B., Suguna, L., & Muthuvijayan, V. (2018). An investigation of konjac glucomannan-keratin hydrogel scaffold loaded with Avena sativa extracts for diabetic wound healing. Colloids and Surfaces B: Biointerfaces, 165, 92-102.

Ren, X., Han, Y., Wang, J., Jiang, Y., Yi, Z., Xu, H., & Ke, Q. (2018). An aligned porous electrospun fibrous membrane with controlled drug delivery–an efficient strategy to accelerate diabetic wound healing with improved angiogenesis. Acta biomaterialia, 70, 140-153

Publicado
2022-12-12
Cómo citar
Ruiz-Salgado, S., Salado-Leza, D. E., Reyes-Valderrama, M. I., & Rodriguez-Lugo, V. (2022). Revisión de compositos de biocerámicas y biopolímeros mediante electrohilado para su uso potencial como andamios para la sustitución de piel. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 10(Especial7), 32-47. https://doi.org/10.29057/icbi.v10iEspecial7.9905

Artículos más leídos del mismo autor/a

1 2 3 > >>