Nuevas metodologías para el análisis de microcistinas en peces

Estudio de Astraloheros Facetus expuestos in vitro

Autores/as

  • Natalia Badagian Baharian Área Bioquímica, Departamento de Biociencias, Facultad de Química, Universidad de la República, Uruguay https://orcid.org/0000-0001-7313-8981
  • Maite Letamendia Área Acuicultura y Patología de Organismos Acuáticos, Facultad de Veterinaria, Universidad de la República, Uruguay https://orcid.org/0000-0003-0049-2116
  • Macarena Pírez Área Inmunología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Uruguay https://orcid.org/0000-0001-9198-6693
  • Daniel Carnevia Área Acuicultura y Patología de Organismos Acuáticos, Facultad de Veterinaria, Universidad de la República, Uruguay https://orcid.org/0000-0001-8069-4054
  • Beatriz Brena Área Bioquímica, Departamento de Biociencias, Facultad de Química, Universidad de la República, Uruguay https://orcid.org/0000-0002-8056-7167

DOI:

https://doi.org/10.26461/20.03

Palabras clave:

cianobacterias, cianotoxinas, peces, inmunoensayos

Resumen

La alta incidencia de floraciones de cianobacterias productoras de microcistinas en el país y la región representan un riesgo muy elevado para humanos y animales. A fin de estudiar el impacto y la presencia de las microcistinas (MCs) en animales, es importante disponer de métodos simples de bajo costo. Como primera aproximación a estos objetivos en peces, se estudiaron Astraloheros facetus (Castañetas) expuestas a una floración de Microcystis spp (MCs 60 y 600 µgMCs/L) en un bioensayo sub-crónico (18 días). Si bien no hubo mortalidad, la histopatología mostró infiltración grasa en el hígado, más relevante en los peces expuestos a la mayor concentración. Para analizar MCs en pescados se optimizaron dos métodos inmunoquímicos sensibles basados en un anticuerpo recombinante de llama (nanobody) de alta especificidad: ELISA y MALDI-TOF cuantitativo, utilizando partículas magnéticas funcionalizadas. Los métodos fueron recientemente desarrollados localmente. La excelente correlación ELISA/MALDI-TOF (rSpearman = 0,988, p< 10-7) resalta el potencial de este ELISA como herramienta simple y costo-efectiva para minimizar las muestras a analizar por métodos de referencia. Las concentraciones de MCs en las Castañetas fueron relevantes, acordes con bioensayos en otras especies y peces de la naturaleza. Esto destaca la importancia de analizar MCs en pescado para consumo.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Natalia Badagian Baharian, Área Bioquímica, Departamento de Biociencias, Facultad de Química, Universidad de la República, Uruguay

Mi formación de grado es Química con orientación en Medio Ambiente y Agrícola de Facultad de Química, Udelar. Actualmente estoy realizando mi tesis de Doctorado  en el Área de Bioquímica e Inmunología, Facultad de Química que busca optimizar métodos de screening de microcistinas en pescados, facilitando la determinación del impacto de las toxinas en ellos y estudios de concentración de estas toxinas.  Resultados de este trabajo han sido presentados en formato poster en Congreso Nacional de Biociencias y ENAQUI (2017 y 2019); en formato de presentación oral en I° Taller de trabajo sobre C.decemmaculatus como modelo experimental- Luján (2017) y VIII Taller de cianobacterias toxigénicas- Salto Grande (2019).

 

Citas

Acuña, S., Baxab, D., Lehmanc, P., Teh, F.C., Deng, D.F. y Tehf, S., 2019. Determining the exposure pathway and impacts of Microcystis on Threadfin shad, Dorosoma petenense, in San Francisco estuary. En:Environmental Toxicology, 39(4), pp.787-798. DOI: 10.1002/etc.4659.

Adamovský, O., Kopp, R., Hilscherová, K., Babica, P., Palíková, M., Pašková, V., Navrátil, S., Maršálek, B. y Bláha, L., 2007. Microcystin kinetics (bioaccumulation and elimination) and biochemical responses in common carp (Cyprinus Carpio )and silver carp (Hypophthalmichthys molitrix) Exposed to Toxic Cyanobacterial Blooms. En:Environmental Toxicology and Chemistry,26, pp.2687-2693. DOI: 10.1897/07-213.1.

American Public Health Association, American Water Works Association y Water Environment Federation, 2005.Standard methods for the examination of water and wastewater.21a ed. Washington: APHA. Standard Method 10200 H, aprobado 1994.

Aubriot, L., Bonilla, S. y Falkner, G., 2011. Adaptive phosphate uptake behaviour of phytoplankton to environmental phosphate fluctuations. En: FEMS Microbiology Ecology,77(1), pp.1–16. DOI: 10.1111/j.1574-6941.2011.01078.x.

Bonilla, S., Haakonsson, S., Somma, A., Gravier, A., Britos, A., Vidal, L., De León, L., Brena, B.M., Pírez, M., Piccini, C., Martínez de la Escalera, G., Chalar, G., González-Piana, M., Martigani, F. y Aubriot, L., 2015. Cianobacterias y cianotoxinas en ecosistemas límnicos de Uruguay. En: INNOTEC, 10, pp.9-22.

Butler, N., Carlisle, J. y Linville, R., 2012. Toxicological summary and suggested action levels to reduce potential adverse health effects of six cyanotoxins. California: Office of Environmental Health Hazard Assessment, California Environmental Protection Agency.

Cazenave, J., Wunderlin, D.A., Bistoni, M.A., Amé, M.V., Krause, E., Pflugmacher, S. y Wiegand, C., 2005. Uptake, tissue distribution and accumulation of micro-cystin-RR in Corydoras paleatus, Jenynsia multidentata and Odontesthes bonariensis: A field and laboratory study. En: Aquatic Toxicology, 75(2), pp.178-190.

Cazenave, J., Wunderlin, D.A., Bistoni, M.A., Amé, M.V., Krause, E., Pflugmacher, S. y Wiegand, C., 2005. Uptake, tissue distribution and accumulation of micro-cystin-RR in Corydoras paleatus, Jenynsia multidentata and Odontesthes bonariensis: A field and laboratory study. En: Aquatic Toxicology, 75(2), pp.178-190.

Chalar, G., 2009. The use of phytoplankton patterns of diversity for algal bloom management. En: Limnologica, 39(3), pp.200-208.

Chorus, I. y Bartram, J., 1999. Toxic cyanobacteria in water. a guide to public health significance, monitoring and managment. Londres: E & FN Spon/Chapman and Halled.

Chorus, I., Falconer, I.R., Salas, H.J. y Bartram, J., 2000. Health caused by fresh water cyanobacteria in recreational water. En: Journal of Toxicology and Environmental Health, 3, pp.323–347.

Dörr, F.A., Pinto, E., Soares, R.M., Feliciano de Oliveira y Azevedo, S.M., 2010. Microcystins in South American aquatic ecosystems: Occurrence, toxicity and toxicological assays. En: Toxicon, 56, pp.1247-1256.

Dyble, J., Gossiaux, D., Landrum, P., Kashian, D.R. y Pothoven, S., 2011. A kinetic study of accumulation and elimination of microcystin-lr in yellow perch (perca flavescens) tissue and implications for human fish consumption. En: Marine Drugs, 9, pp.2553-2571.

Flores, N.M., Miller, T.R. y Stockwell, J.D., 2018. A global analysis of the relationship between concentrations of microcystins in water and fish. En: Frontiers of Marine Science, 5(30). DOI: 10.3389/fmars.2018.00030.

Font-Iribarne, E., 2016. Cianotoxinas en abrevaderos: peligrosidad y efectos negativos para el Ganado. Montevideo: Facultad de Ciencias. (Tesis de Maestría).

Geis-Asteggiante, L., Lehotay, S.J., Fortis, L.L., Paoli, G., Wijey, C. y Heinzen, H., 2011. Development and validation of a rapid method for microcystins in fish and comparing LC-MS/MS results with ELISA. En: Analythical and Bioanalythical Chemistry, 401, pp.2617–2630.

González-Piana, M., Fabian, D., Delbene, L. y Chalar, G., 2011. Toxics blooms of Microcystis aeruginosa in three Río Negro reservoirs, Uruguay. En: Harmful Algae News, 43, pp.16-17.

González-Piana, M., Fabián, D., Piccardo, A. y Chalar, G., 2017. Dynamics of total microcystin lr concentration in three subtropical hydroelectric generation reservoirs in Uruguay, South America. En: Bulletin of Environmental Contamination and Toxicology, 99, pp.488–492. DOI: 10.1007/s00128-017-2158-7.

González-Piana, M., Piccardo, A., Ferrer, C., Brena, B., Pirez, M., Fabian, D. y Chalar, G., 2018. Effects of wind mixing in a stratified water column on toxic cyanobacteria and Microcystin-LR distribution in a subtropical reservoir. En: Bulletin of Environmental Contamination and Toxicology, 101, pp.611–616. DOI: 10.1007/s00128-018-2446-x.

González-Sapienza, G., Rossotti, M.A. y Tabares-Da Rosa, S., 2017. Single-domain antibodies as versatile affinity reagents for analytical and diagnostic applications. En:Frontiers in Immunology, 8(977). DOI: 10.3389/fimmu.2017.00977.

Hu, X., Ye, J., Zhang, R., Wu, X., Zhang, Y. y Wu, C., 2017. Detection of free microcystins in the liver and muscle of freshwater fish by liquid chromatography-tandem mass spectrometry. En: Journal of Environmental Science and Health, Part B, 52(10), pp. 770-776. DOI: 10.1080/03601234.2017.1356670.

Huisman, J., Codd, G.A, Paerl, H.W., Ibelings, B.W., Verspagen, J.M. y Visser, P.M., 2018. Cyanobacterial blooms. En: Nature Reviews Microbiology, 16, pp.471–483.

Ibelings, B.W. y Chorus, I., 2007. Accumulation of cyanobacterial toxins in freshwater ‘‘seafood’’ and its consequences for public health: a review. En: Environmental Pollution, 150, pp.177-192.

Kruk, C., Martínez, A., Martínez de la Escalera, G., Trinchin, R., Manta, G., Segura, A., Piccini, C., Brena, B., Fabiano, G., Pirez, M., Gabito, L., Alcántara, I. y Yannicelli, B., 2019. Floración excepcional de cianobacterias tóxicas en la costa de Uruguay, verano 2019. En: INNOTEC, 18, pp.36-68.

Le Manach, S., Sotton, B., Huet, H., Duval, C., Paris, A., Marie, A., Yépremian, C., Catherine, A., Mathéron, L., Vinh, J., Edery, M. y Marie, B., 2018. Physiological effects caused by microcystin-producing and non-microcystin producing Microcystis aeruginosa on medaka fish: a proteomic and metabolomic study on liver. En: Environmental Pollution, 234, pp.523-537. DOI: 10.1016/j.envpol.2017.11.011.

Li, X.Y., Chung, I.K., Kim, J.I. y Lee, J.A, 2004. Subchronic oral toxicity of microcystin in common carp (Cyprinus carpio L.) exposed to Microcystis under laboratory conditions. En: Toxicon,44(8), pp.821-827. https://doi.org/10.1016/j.toxicon.2004.06.010.

Li, L. y Xie, P., 2009. Hepatic histopathological characteristics and antioxicant responses of phytoplanctivorous silver carp intraperitonally injected with extracted microctystins. En: Biomedical and Envoronmental Sciences, 22, pp.297-302.

Meriluoto, J., Spoof, L. y Codd, G.A., eds., 2017. Handbook of cyanobacterial monitoring and cyanotoxin analysis. Londres: John Wiley & Sons.

Niedermeyer, T., Prinsep, M.R., Wood, S.A., Kaufononga, S.A.F., Cary, S.C. y Hamilton, D.P., 2014. High levels structural diversity observed in microcystins from Microcystis CAWBG11 and characterization of six new microcystin congeners. En: Marine Drugs, 12, pp.5372–5395.

Pírez-Schirmer, M., Gonzalez-Sapienza, G., Sienra, D., Ferrari, G., Last, M., Last, J.A. y Brena, B.M., 2013. Limited analytical capacity for cyanotoxins in developing countries may hide serious environmental health problems: Simple and affordable methods maybe the answer. En: Journal of Environmental Management, 114, pp. 63-71.

Pírez-Schirmer, M., Rossotti, M.A., Badagian, N., Leizagoyen, C., Brena, B.M. y Gonzalez-Sapienza, G.G., 2017. Comparison of three anti-hapten VHH selection strategies for the development of highly sensitive immunoassays for microcystins. En: Analythical Chemistry, 89(12), pp.6800-6806.

Pírez-Schirmer, M., Brena, B.M. y González-Sapienza, G., 2019. Oriented functionalization of magnetic beads with in vivo biotinylated nanobodies for rapid MALDI-TOFMS. Ultrasensitive quantitation of microcystins in biological samples. En: Analythical Chemistry, 91(15), pp.9925-9993.

Poste, A.E., Hecky, R.E. y Guildford, S.J., 2011. Evaluating microcystin exposure risk through fish consumption. En: Environmental Science and Technology, 45, pp. 5806–5811. DOI: 10.1021/es200285c.

Preeti, T., Hariharan, G. y Rajarajeswari, G.R., 2016. Histopathological and biochemical effects of cyanobacterial cells containing microcystin-LR on Tila-pia fish. En: Water and Environment Journal, 30(1-2), pp.135-142 DOI: 10.1111/wej.12169.

Prieto, A., Atencio, L., Puerto, M., Pichardo, S., Moreno, I. y Cameán, A., 2008. Efectos tóxicos producidos por las microcistinas en peces. En: Toxicology, 25, pp.22-31.

Qi, Y., Rosso, L., Sedan, D., Giannuzzi, L., Andrinolo, D. y Volmer, D.A., 2015. Seven new microcystin variants discovered from native Microcystis aeruginosa strain‐unambigous assignment of product ions by tandem mass spectrometry. En: Rapid Communications in Mass Spectrometry, 29, pp.220-224.

Roegner, A., Truong, L., Weirich, C., Pírez-Schirmer, M., Brena, B., Miller, T.R. y Tanguay, R., 2019. Combined Danio rerio embryo morbidity, mortality and pho-tomotor response assay: a tool for developmental risk assessment from chronic cyanoHAB exposure. En: Science of The Total Environment, 697. DOI: 10.1016/j.scitotenv.2019.134210.

Schmidt, J.R., Wilhelm, S.W. y Boyer, G.L., 2014. The fate of Microcystins in the environment and challenges for monitoring. En: Toxins, 6, pp.3354-3387. DOI:10.3390/toxins6123354.

Spoof, L. y Catherine, A., 2017. Tables of microcystins and nodularins. En: Meriluoto, J., Spoof, L. y Codd, G.A., eds. Handbook of cianobacterial mo-nitoring and cyanotoxin analysis. Londres: John Wiley & Sons. Appendix 3, pp.541-552.

Svirčev, Z., Drobac, D., Tokodi, N., Mijović, B., Codd, G. A., Meriluoto, J., 2017. Toxicology of microcystins with reference to cases of human intoxications and epidemiological investigations of exposures to cyanobacteria and cyanotoxins. En: Archives of Toxicology, 91(2), pp.621–650. DOI:10.1007/s00204-016-1921-6.

Svirčev, Z., Lalić, D., Bojadžija Savić, G., Tokodi N., Drobac Backović D., Chen L., Meriluoto J. y Codd GA., 2019. Global geographical and historical overview of cyanotoxin distribution and cyanobacterial poisonings. En: Archives of Toxicology, 93, pp.2429–2481. DOI:10.1007/s00204-019-02524-4.

UNESCO, 2009. Cianobacterias Planctónicas del Uruguay. Manual para la identificación y medidas de gestión. Montevideo: UNESCO. (Documento Técnico PHI-LAC, 16). ISBN 978-92-9089-138-3.

Uruguay, Ministerio de Vivienda, Ordenamiento Territorial y Medio Ambiente, 2019. Iniciativa para el Rio Negro [En línea]. Montevideo: DINAMA [Consulta: 14 de febrero de 2020]. Disponible en: https://www.mvotma.gub.uy/novedades/noticias/item/10012209-iniciativa-para-el-rio-negro.

Zaffiro, A., Rosenblum, L. y Wendelken, S.C., 2016. Method 546: Determination of total microcystins and nodularins in drinking water and ambient water by adda enzyme-linked immunosorbent assay[En línea]. Cincinnati: USEPA. [Con-sulta: 6 de Abril de 2018] Disponible en: https://www.epa.gov/sites/production/files/2016-09/documents/method-546-determination-total-microcystins-nodularins-drinking-water-ambient-water-adda-enzyme-linked-immunosorbent-assay.pdf.

Zanchett, G. y Oliveira-Filho, E.C., 2013. Cyanobacteria and Cyanotoxins: from impacts on aquatic ecosystems and human health to anticarcinogenic effects. En: Toxins, 5, pp.1896-1917.

Descargas

Publicado

2020-06-03

Cómo citar

Badagian Baharian, N., Letamendia, M., Pírez, M., Carnevia, D., & Brena, B. (2020). Nuevas metodologías para el análisis de microcistinas en peces: Estudio de Astraloheros Facetus expuestos in vitro. INNOTEC, (20 jul-dic), 10–29. https://doi.org/10.26461/20.03

Número

Sección

Artículos

Artículos más leídos del mismo autor/a