Peran Gen TNFRSF11B sebagai Pemicu Osteoporosis Sekunder pada Pasien Artritis Reumatoid

Nur A. Ali, Dika P. Destiani, Riezki Amalia

Abstract


Artritis reumatoid (AR) adalah kelainan autoimun sistemik yang menyebabkan peradangan luas dan persisten pada lapisan sendi sinovial. Pasien dengan AR memiliki risiko lebih besar terkena osteoporosis sekunder. Osteoporosis (OP) sekunder adalah komplikasi umum dari radang sendi seperti AR. Prevalensi OP sekunder pada pasien AR di berbagai belahan dunia dilaporkan antara 22% hingga 36%. Beberapa polimorfisme genetik dapat memengaruhi timbulnya penyakit osteoporosis. Proses remodeling tulang erat kaitannya dengan receptor activator nuclear factor-κB ligand (RANKL)/RANK dan osteoprotegerin (OPG). RANK/ RANKL/OPG adalah memiliki peran penting dalam osteoklastogenesis, karena OPG mampu menghambat diferensiasi dan aktivasi osteoklas. Kajian pustaka ini membahas mengenai hubungan polimorfisme gen TNFRSF11B yang mengkode protein OPG dengan risiko osteoporosis sekunder pada penderita AR. Metode yang digunakan pada kajian pustaka ini adalah dengan penelusuran artikel penelitian dan artikel review dari Pubmed, Cochrane Library, dan Medline dengan kata kunci “TNFRSF11B polymorphism”, “osteoprotegerin polymorphism”, “rheumatoid arthritis”, dan “secondary osteoporosis”. Sebagai hasil kajian pustaka, didapatkan beberapa simpulan berbeda dari studi pengaruh polimorfisme gen TNFRSF11B terhadap OP sekunder pada AR. Gen TNFRSF11B memiliki beberapa polimorfisme yang erat kaitannya dengan remodeling tulang, di antaranya adalah C950T, G1181C, A163G, T245G dan rs4876869.

Kata kunci: Artritis reumatoid, osteoporosis sekunder, polimorfisme, TNFRSF11B

 

The Roles of TNFRSF11B Genes as a Trigger for Secondary Osteoporosis in Rheumatoid Arthritis Cases

Abstract

Rheumatoid arthritis (RA) is an autoimmune disorder responsible for widespread and persistent inflammation of the synovial joint lining. Hence, victims are prone to greater risk of developing secondary osteoporosis (OP), a common complication of arthritis. The global prevalence of secondary OP among RA patients is estimated between 22-36%, although certain genetic polymorphisms pose a possible influence. Also, bone remodeling is closely related to the receptor activator nuclear factor-κB ligand (RANKL)/RANK and osteoprotegerin (OPG). The variables play a significant role in osteoclastogenesis, due to the ability of OPG to inhibit osteoclast differentiation and activation. This literature review discusses the relationship of TNFRSF11B gene polymorphisms that encode OPG protein with the risk of developing secondary osteoporosis in RA patients. The research method encompassed exploring similar articles from Pubmed, Cochrane Library, and Medline, using particular keywords, such as “TNFRSF11B polymorphism”, “osteoprotegerin polymorphism”, “rheumatoid arthritis” and “secondary osteoporosis”. Several distinct conclusions were obtained after analyzing the effects of TNFRSF11B gene polymorphisms on secondary OP in RA cases. Furthermore, the TNFRSF11B gene showed various polymorphisms closely related to bone remodeling, including C950T, G1181C, A163G, T245G and rs4876869.

Keywords: Polymorphism, rheumatoid arthritis, secondary osteoporosis, TNFRSF11B


Keywords


Artritis reumatoid, osteoporosis sekunder, polimorfisme, TNFRSF11B

References


Fidahic M, Kadic AJ, Radic M, Puljak L. Celecoxib for rheumatoid arthritis. Cochrane Database Syst Rev. 2017;6(6):CD012095.

Guo Q, Wang Y, Xu D, Nossent J, Pavlos NJ, Xu J. Rheumatoid arthritis: Pathological mechanisms and modern pharmacologic therapies. Bone Res. 2018; 6(1):1–14. doi: 10.1038/s41413-018-0016-9

McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. N Engl J Med. 2011;365(23):2205–19. doi: 10.1056/NEJMra1004965

Cross M, Smith E, Hoy D, Carmona L, Wolfe F, Vos T, et al. The global burden of rheumatoid arthritis: Estimates from the Global Burden of Disease 2010 study. Ann Rheum Dis. 2014;73(7):1316–22. doi: 10.1136/annrheumdis-2013-204627

Choudhary N, Bhatt LK, Prabhavalkar KS. Experimental animal models for rheumatoid arthritis. Immunopharmacol Immunotoxicol. 2018;40(3):193–200. doi: 10.1080/08923973.2018.1434793

Choy E. Understanding the dynamics: Pathways involved in the pathogenesis of rheumatoid arthritis. Rheumatol. 2012;51(5):3–11. doi: 10.1093/rheumatology/kes113

Sozen T, Ozisik L, Basaran NC. An overview and management of osteoporosis. Eur J Rheumatol. 2017;4(1):46–56. doi: 10.5152/eurjrheum.2016.048

Nazrun AS, Tzar MN, Mokhtar SA, Mohamed IN. A systematic review of the outcomes of osteoporotic fracture patients after hospital discharge: Morbidity, subsequent fractures, and mortality. Ther Clin Risk Manag. 2014;10:937–48. doi: 10.2147/TCRM.S72456

Xu S, Wang Y, Lu J, Xu J. Osteoprotegerin and RANKL in the pathogenesis of rheumatoid arthritis-induced osteoporosis. Rheumatol Int. 2012;32(11):3397–403. doi: 10.1007/s00296-011- 2175-5

Kleyer A, Finzel S, Rech J, Manger B, Krieter M, Faustini F, et al. Bone loss before the clinical onset of rheumatoid arthritis in subjects with anticitrullinated protein antibodies. Ann Rheum Dis. 2014;73(5):854–60. doi: 10.1136/annrheumdis-2012-202958

Black DM, Rosen CJ. Clinical practice. Postmenopausal osteoporosis. N Engl J Med. 2016;374(3):254–62. doi: 10.1056/NEJMcp1513724

Bultink IEM, Vis M, van der Horst-Bruinsma IE, Lems WF. Inflammatory rheumatic disorders and bone. Curr Rheumatol Rep. 2012;14(3):224–30. doi: 10.1007/s11926-012-0252-8

Sugiguchi S, Goto H, Inaba M, Nishizawa Y. Preferential reduction of bone mineral density at the femur reflects impairment of physical activity in patients with low-activity rheumatoid arthritis. Mod Rheumatol. 2010;20(1):69–73. doi: 10.1007/s10165-009-0242-5

Heberlein I, Demary W, Bloching H, Braun J, Buttgereit F, Dreher R, et al. Prophylaxis and treatment of osteoporosis in patients with rheumatoid arthritis (ORA study). Z Rheumatol. 2011;70(9):793–802. doi: 10.1007/s00393-011-0872-9

Walsh MC, Choi Y. Biology of the RANKL-RANK-OPG system in immunity, bone, and beyond. Front Immunol. 2014;5(OCT):511. doi: 10.3389/fimmu.2014.00511

Liu C, Walter TS, Huang P, Zhang S, Zhu X, Wu Y, et al. Structural and functional insights of RANKL–RANK interaction and signaling. J Immunol. 2010;184(12):6910–9. doi: 10.4049/jimmunol.0904033

Nelson CA, Warren JT, Wang MWH, Teitelbaum SL, Fremont DH. RANKL employs distinct binding modes to engage RANK and the osteoprotegerin decoy receptor. Structure. 2012;20(11):1971–82. doi: 10.1016/j.str.2012.08.030

Özbaş H, Onrat ST, Özdamar K. Genetic and environmental factors in human osteoporosis. Mol Biol Rep. 2012;39(12):11289–96. doi: 10.1007/s11033-012-2038-5

Horst-Sikorska W, Dytfeld J, Wawrzyniak A, Marcinkowska M, Michalak M, Franek E, et al. Vitamin D receptor gene polymorphisms, bone mineral density and fractures in postmenopausal women with osteoporosis. Mol Biol Rep. 2013;40(1):383–90. doi: 10.1007/s11033-012-2072-3

Kohli SS, Kohli VS. Role of RANKL-RANK/osteoprotegerin molecular complex in bone remodeling and its immunopathologic implications. Indian J Endocrinol Metab. 2011;15(3):175–81. doi: 10.4103/2230-8210.83401

Peng Y, Sheng X, Xue F, Qian Y. The genetic association between osteoprotegerin (OPG) gene polymorphisms and bone mineral density (BMD) in postmenopausal women: A meta-analysis. Med (United States). 2018;97(51):e13507. doi: 10.1097/MD.0000000000013507

Sonmez M, Kazaz N, Yucel B, Topbas M, Ucar F. C950T and C1181G osteoprotegerin gene polymorphisms in myeloma bone disease. Hematology. 2014;19(4):213–26. doi: 10.1179/1607845413Y.0000000114

González-Mercado A, Sánchez-López JY, Perea-Díaz FJ, Magaña-Torres MT, Salazar-Páramo M, González-López L, et al. Association of polymorphisms of the TNFRSF11B and TNFSF11 genes with bone mineral density in postmenopausal women from western Mexico. Arch Med Sci. 2019;15(5):1352–6. doi: 10.5114/ao ms.2019.87410

Narducci P, Bareggi R, Nicolin V. Receptor activator for nuclear factor kappa B lgand (RANKL) as an osteoimmune key regulator in bone physiology and pathology. Acta Histochem. 2011;113(2):73–81. doi: 10.1016/j.act his.2009.10.003

Goëb V, Trouvin Anne-Priscille. Receptor activator of nuclear factor-κB ligand and osteoprotegerin: Maintaining the balance to prevent bone loss. Clin Interv Aging. 2010;5:345–54. doi: 10.21 47/CIA.S10153

Thirunavukkarasu K, Miles RR, Halladay DL, Yang X, Galvin RJ, Chandrasekhar S, et al. Stimulation of osteoprotegerin (OPG) gene expression by transforming growth factor-β (TGF-β). Mapping of the OPG promoter region that mediates TGF-β effects. J Biol Chem. 2001;276(39):36241–50. doi: 10.1074/jbc.M104319200

Vidal C, Formosa R, Xuereb-Anastasi A. Functional polymorphisms within the TNFRSF11B (osteoprotegerin) gene increase the risk for low bone mineral density. J Mol Endocrinol. 2011;47(3):327–33. doi: 10.1530/JME-11-0067

Zavala-Cerna MG, Moran-Moguel MC, Cornejo-Toledo JA, Gonzalez-Montoya NG, Sanchez-Corona J, Salazar-Paramo M, et al. Osteoprotegerin polymorphisms in a Mexican population with rheumatoid arthritis and generalized osteoporosis: A preliminary report. J Immunol Res. 2015;2015:376197. doi: 10.1155/2015/376197

Wang C, Zhang Z, Zhang H, He JW, Gu JM, Hu WW, et al. Susceptibility genes for osteoporotic fracture in postmenopausal Chinese women. J Bone Miner Res. 2012;27(12):2582–91. doi: 10.1002/jbmr.1711

Tang H, Zhu X, Wu L, Mo X, Deng F, Lei S. Integrative analysis confirmed the association between osteoprotegerin and osteoporosis. Chin Med Sci J. 2019;34(2):147–56. doi: 10.24920/003466

Park SE, Oh KW, Lee WY, Baek KH, Yoon KH, Son HY, et al. Association of osteoporosis susceptibility genes with bone mineral density and bone metabolism related markers in Koreans: The Chungju Metabolic Disease Cohort (CMC) study. 2014;61(11):1069–78. doi: 10.1507/endocrj.ej14-0119

Zhao HY, Liu JM, Ning G, Zhao YJ, Zhang LZ, Sun LH, et al. The influence of Lys3Asn polymorphism in the osteoprotegerin gene on bone mineral density in Chinese postmenopausal women. Osteoporos Int. 2005;16(12):1519–24. doi: 10.1007/s00198-005-1865-9

Nakajima T, Cheng T, Rohrwasser A, Bloem LJ, Pratt JH, Inoue I, et al. Functional analysis of a mutation occurring between the two in-frame AUG codons of human angiotensinogen. J Biol Chem. 1999;274(50):35749–55. doi: 10.1074/jbc.274.50.35749

Nava-Valdivia CA, Saldaña-Cruz AM, Corona-Sanchez EG, Murillo-Vazquez, JD, Moran-Moguel MC, Salazar-Paramo M. Polymorphism rs2073618 of the TNFRSF11B (OPG) gene and bone mineral density in Mexican women with rheumatoid arthritis. J Immunol Res. 2017;2017:1–8. doi: 10.1155/2017/7680434

Shengqian X, Ma XX, Hu LW, Peng LP, Pan FM, Xu JH. Single nucleotide polymorphism of RANKL and OPG genes may play a role in bone and joint injury in rheumatoid arthritis. Clin Exp Rheumatol. 2014;32(5):697–704.

Assmann G, Koenig J, Pfreundschuh M, Epplen JT, Kekow J, Roemer K, et al. Genetic variations in genes encoding RANK, RANKL, and OPG in rheumatoid arthritis: A case-control study. J Rheumatol. 2010;37(5):900–4. doi: 10.3899/jrheum.091110

Ye XH, Cheng JL, Liu RP. Osteoprotegerin polymorphisms in Chinese Han patients with rheumatoid arthritis. Genet Mol Res. 2015;14(2):6569–77. doi: 10.4238/2015.June.12.11

Sheng X, Cai G, Gong X, Yao Z, Zhu Y. Common variants in OPG confer risk to bone mineral density variation and osteoporosis fractures. Sci Rep. 2017;(November 2016):1739. doi: 10.1038/s41598-017-01579-6

Luo Y, Hu Z, Hao J, Jiang W, Shen J, Zhao J. Significant associations between the A163G and G1181C polymorphisms of the osteoprotegerin gene and risk of osteoporosis, especially in postmenopausal women: A meta-analysis. Genet Test Mol Biomarkers. 2014;18(3):211–9.

Piedra M, García-Unzueta MT, Berja A, Paule B, Lavín BA, Valero C. Single nucleotide polymorphisms of the OPG / RANKL system genes in primary hyperparathyroidism and their relationship with bone mineral density. BMC Med Genet. 2011;12:168. doi: 10.1186/1471-2350-12-168

Krajcovicova V, Omelka R, Durisová J, Martiniakova M, Galbavy D, Bauerova M. The effect of A163G polymorphism in the osteoprotegerin gene on osteoporosis related traits in Slovak postmenopausal women. Anthropol Anz. 2015;72(3):311–9. doi: 10.1127/anthranz/2015/0494

Blaščáková MM, Blaščáková Ľ, Poráčová J, Mydlár J, Vašková J, Bernasovská J, et al. Relationship between A163G osteoprotegerin gene polymorphism and other osteoporosis parameters in Roma and non-Roma postmenopausal women in eastern Slovakia. J Clin Lab Anal. 2017;31(5):e22093. doi: 10.1002/jcla.22093

Lee YH, Woo JH, Choi SJ, Ji JD, Song GG. Associations between osteoprotegerin polymorphisms and bone mineral density: A meta-analysis. Mol Biol Rep. 2010;37(1):227–34. doi: 10.1007/s11033-009-9637-9

Hussien YM, Shehata A, Karam RA, Alzahrani SS, Magdy H, El-Shafey AM. Polymorphism in vitamin D receptor and osteoprotegerin genes in Egyptian rheumatoid arthritis patients with and without osteoporosis. Mol Biol Rep. 2013;40(5):3675–80. doi: 10.1007/s11033-012-2443-9

Jessica A, Brambila-tapia L, Dur J, Mena JP, Salazar-p M, Iv J, et al. MTHFR C677T, MTHFR A1298C, and OPG A163G polymorphisms in Mexican patients with rheumatoid arthritis and osteoporosis. 2012;32:109–14.

Panach L, Mifsut D, Tarín JJ, Cano A, García-Pérez MÁ. Replication study of three functional polymorphisms associated with bone mineral density in a cohort of Spanish women. J Bone Miner Metab. 2014;32(6):691–8. doi: 10.1007/s00774-013-0539-5

Boroňová I, Bernasovská J, Kľoc J, Tomková Z, Petrejčíková E, Mačeková S, et al. Analysis of OPG gene polymorphism T245G (rs3134069) in Slovak postmenopausal women. 2014;8(9):600–13. doi: 10.5281/zenodo.1096231

Wu S, Li Z, Zhang J, Rui Y. The genetic association between osteoprotegerin gene polymorphisms and fracture risk in Chinese Han population. J Cell Physiol. 2019;234(11):20603–7. doi: 10.1002/jcp.28664

Cai YM, Wang J, Wang QW, Long X, Wang WG, Zhang L, et al. Association of OPG gene polymorphism with susceptibility to rheumatoid arthrits in Chinese Han. Immunol Lett. 2015;165(2):102–6. doi: 10.1016/j.imlet.2014.07.011

Rojano-Mejía D, Coral-Vázquez RM, Espinosa LC, Romero-Hidalgo S, López-Medina G, García MdCA, et al. TNFRSF11B gene haplotype and its association with bone mineral density variations in postmenopausal Mexican-Mestizo women. Maturitas. 2012;71(1):49–54. doi: 10.1016/j.maturitas.2011.10.009

Firestein GS, McInnes IB. Immunopathogenesis of rheumatoid arthritis. Immunity. 2017;46(2):183–96. doi: 10.1016/j.immuni.2017.02.006

Kany S, Vollrath JT, Relja B. Cytokines in inflammatory disease. Int J Mol Sci. 2019;20(23):6008. doi: 10.3390/ijms20236008

Kuwabara T, Ishikawa F, Kondo M, Kakiuchi T. The role of IL-17 and related cytokines in inflammatory autoimmune diseases. Mediators Inflamm. 2017;2017:3908061. doi: 10.1155/2017/3908061

Tokuhara CK, Santesso MR, de Oliveira GSN, Ventura TMdS, Doyama JT, Zambuzzi WF, et al. Updating the role of matrix metalloproteinases in mineralized tissue and related diseases. J Appl Oral Sci. 2019;27:e20180596. doi: 10.1590/1678-7757-2018-0596

Magyari L, Varszegi D, Kovesdi E, Sarlos P, Farago B, Javorhazy A, et al. Interleukins and interleukin receptors in rheumatoid arthritis: Research, diagnostics and clinical implications. World J Orthop. 2014;5(4):516–36. doi: 10.5312/wjov5.i4.516

Lechner J, Rudi T, von Baehr V. Osteoimmunology of tumor necrosis factor-alpha, IL-6, and RANTES/CCL5: A review of known and poorly understood inflammatory patterns in osteonecrosis. Clin Cosmet Investig Dent. 2018;10:251–62. doi: 10.2147/CCIDE.S184498

Karmakar S, Kay J, Gravallese EM. Bone damage in rheumatoid arthritis: Mechanistic insights and approaches to prevention. Rheum Dis Clin North Am. 2010;36(2):385–404. doi: 10.1016/j.rdc.2010.03.003

Kim SY, Schneeweiss S, Liu J, Daniel GW, Chang CL, Garneau K, et al. Risk of osteoporotic fracture in a large population-based cohort of patients with rheumatoid arthritis. Arthritis Res Ther. 2010;12(4):R154. doi: 10.1186/ar3107

Schett G, Gravallese E. Bone erosion in rheumatoid arthritis: Mechanisms, diagnosis and treatment. Nat Rev Rheumatol. 2012;8(11):656–64. doi: 10.1038/nrrheum.2012.153

Pereira RMR, de Carvalho JF, Canalis E. Glucocorticoid-induced osteoporosis in rheumatic diseases. Clinics (Sao Paulo). 2010;65(11):1197–205. doi: 10.1590/S1807-59322010001100024

Greenbaum G, Templeton AR, Zarmi Y, Bar-David S. Allelic richness following population founding events–A stochastic modeling framework incorporating gene flow and genetic drift. PLoS One. 2014; 9(12):1–23. doi: 10.1371/journal.pone.0115203

Hellwege JN, Keaton JM, Giri A, Gao X, Edwards DRV, Edwards TL. Population stratification in genetic association studies. Curr Protoc Hum Genet. 2017;95(October):1.22.1–23. doi: 10.1002cphg.48

Sukhumsirichart W. Polymorphisms. Genet Divers Dis Susceptibility. 2018;2018:3–24. doi: 10.5772/intechopen.76728

Hoes JN, Bultink IEM, Lems WF. Management of osteoporosis in rheumatoid arthritis patients. Expert Opin Pharmacother. 2015;16(4):559–71 doi: 10.1517/14656566.2015.997709



Digital Object Identifier

DOI : https://doi.org/10.15416/ijcp.2021.10.3.234


Dimension Citation Metrics Badge

Refbacks

  • There are currently no refbacks.


 Indonesian Journal of Clinical Pharmacy is indexed by

        

  Creative Commons License

IJCP by Universitas Padjadjaran is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License

 

View My Stats