Gut Hormones and Energy Balance, The Future for Obesity Therapy?

Anna Meiliana, Andi Wijaya

Abstract


BACKGROUND: The prevalence of obesity is increasing in both developed and developing countries along with associated diseases such as type 2 diabetes and coronary heart disease. The recent discovery of a number of gut hormones that play a role in appetite regulation and are released or suppressed in response to a meal may offer new targets for the treatments of obesity.

CONTENT: In addition to the obvious role of the gut in the digestion and absorption of nutrient, the intestine and associated visceral organs, including the pancreas, liver, and visceral adipose depots, have important sensing and signaling roles in the regulation of energy homeostatis. Signals reflecting energy stores, recent nutritional state, and other parameters are integrated in the central nervous system, particularly in the hypotalamus, to coordinate energy intake and expenditure.

SUMMARY: Our understanding of the role of the gut in energy balance and insights into gut-derived signals will stimulate previously unexplored therapeutics for obesity and other disorders of energy balance.

KEYWORDS: obesity, energy, balance, gut hormones, satiation, satiety

 

 


Full Text:

PDF

References


Lenz A, Diamond FB. Obesity: the hormonal milieu. Curr Opin in Endocrinol. 2008; 15: 9-20, CrossRef.

Farooqi IS, O’Rahilly S. Monogenic obesity in humans. Annu Rev Med. 2005; 56: 443-58, CrossRef.

Murphy KG, Bloom SR. Gut hormones and the regulation of energy homeostasis. Nature. 2006; 444: 854-9, CrossRef.

Badman MK. The gut and energy balance: Visceral allies in the obesity wars. Science. 2005; 307: 1909-14, CrossRef.

Murphy KG, Abbott CR, Bloom SR. Gut hormones come of age. Curr Opin Endocrinol Diabetes. 2005; 12: 53-5, CrossRef.

Smith KL, Parkinson JR, Bloom SR. Gut hormones: the future for obesity therapy? Curr Opin Endocrinol Diabetes. 2006; 13: 62-4, CrossRef.

Wynne K, Park AJ, Small CJ, Patterson M, Ellis SM, Murphy KG, et al. Subcutaneous oxyntomodulin reduces body weight in overweight and obese subjects: A double-blind, randomized, controlled trial. Diabetes. 2005; 54: 2390-5, CrossRef.

Cummings DE, Overduin J. Gastrointestinal regulation of food intake. J Clin Invest. 2007; 117: 13-23, CrossRef.

Blundell JE, Halford JCG. Regulation of nutrient supply: The brain and appetite control. Proc Nutr Soc.1994; 53: 407-18, CrossRef.

Smith GP. Satiation: From Gut to Brain. New York: Oxford University Press; 1998, CrossRef.

Strubbe JH, Woods SC. The timing of meals. Psychol Rev. 2004; 111: 128-41, CrossRef.

Gibbs J, Young RC, Smith GP. Cholecystokinin elicits satiety in rats with open gastric fistulas. Nature.1973; 245: 323-5, CrossRef.

Strader AD, Woods SC. Gastrointestinal hormones and food intake. Gastroenterology. 2005; 128: 175-91, CrossRef.

Janowitz HD, Grossman MI. Effect of variations in nutritive density on intake of food of dogs and rats. Am J Physiol. 1949; 158: 184-93, PMID.

Woods SC. The eating paradox: How we tolerate food. Psychol Rev. 1991; 98: 488-505, CrossRef.

Grill H, Norgren R. Chronically decerebrate rats demonstrate satiation but not bait shyness. Science. 1978; 201: 267-9, CrossRef.

Grill HJ, Smith GP. Cholecystokinin decreases sucrose intake in chronic decerebrate rats. Am J Physiol.1988; 254: R853-6, PMID.

Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature. 2000; 404: 661-71, PMID.

Morton GJ, Cummings DE, Baskin DG, Barsh GS, Schwartz MW. Central nervous system control of food intake and body weight. Nature. 2006; 443: 289-95, CrossRef.

Kaplan JM, Spector AC, Grill HJ. Dynamics of gastric emptying during and after stomach fill. Am J Physiol. 1992; 263: R813-9, PMID.

Ritter RC. Gastrointestinal mechanisms of satiation for food. Physiol Behav. 2004; 81: 249-73, CrossRef.

Powley TL, Phillips RJ. Gastric satiation is volumetric, intestinal satiation is nutritive. Physiol Behav. 2004; 82: 69-74, CrossRef.

Conigrave AD, Quinn SJ, Brown EM. L-amino acid sensing by the extracellular Ca2+-sensing receptor. Proc Natl Acad Sci. 2000; 97: 4814-9, CrossRef.

Berthoud HR, Powley TL. Vagal afferent innervation of the rat fundic stomach: Morphological characterization of the gastric tension receptor. J Comp Neurol.1992; 319: 261-76, CrossRef.

Phillips RJ, Powley TL. Tension and stretch receptors in gastrointestinal smooth muscle: Re-evaluating vagal mechanoreceptor electrophysiology. Brain Res Rev. 2000; 34: 1-26, CrossRef.

Schwartz GJ, Salorio CF, Skoglund C, Moran TH. Gut vagal afferent lesions increase meal size but do not block gastric preload-induced feeding suppression. Am J Physiol. 1999; 276: R1623-9, PMID.

Gibbs J, Maddison SP, Rolls ET. Satiety role of the small intestine examined in sham-feeding rhesus monkeys. J Comp Physiol Psychol. 1981; 95: 1003-15, CrossRef.

York DA, Lin L, Thomas SR, Braymer HD, Park M. Procolipase gene expression in the rat brain: Source of endogenous enterostatin production in the brain. Brain Res. 2006; 1087: 52-9, CrossRef.

Okada S, York DA, Bray GA, Mei J, Erlanson-Albertsson C. Differential inhibition of fat intake in two strains of rat by the peptide enterostatin. Am J Physiol.1992; 262: R1111-6, PMID.

Park M, Lin L, Thomas S, Braymer HD, Smith PM, Harrison DHT, et al. The F1-ATPase β-subunit is the putative enterostatin receptor. Peptides. 2004; 25: 2127-33, CrossRef.

Lin L, York DA. 5-HT1B receptors modulate the feeding inhibitory effects of enterostatin. Brain Res. 2005; 1062: 26-31, CrossRef.

Kovacs EMR, Lejeune MPGM, Westerterp-Plantenga MS. The effects of enterostatin intake on food intake and energy expenditure. Br J Nutr. 2003; 90: 207, CrossRef.

Qin X, Tso P. The Role of apolipoprotein AIV on the control of food intake. Curr Drug Targets. 2005; 6: 145-51, CrossRef.

Fujimoto K, Fukagawa K, Sakata T, Tso P. Suppression of food intake by apolipoprotein A-IV is mediated through the central nervous system in rats. J Clin Invest. 1993; 91: 1830-3, CrossRef.

Katsuura G, Asakawa A, Inui A. Roles of pancreatic polypeptide in regulation of food intake. Peptides. 2002; 23: 323-9, CrossRef.

Asakawa A, Inui A, Yuzuriha H, Ueno N, Katsuura G, Fujimiya M, et al. Characterization of the effects of pancreatic polypeptide in the regulation of energy balance. Gastroenterology. 2003; 124: 1325-36, CrossRef.

Batterham RL, Le Roux CW, Cohen MA, Park AJ, Ellis SM, Patterson M, et al. Pancreatic polypeptide reduces appetite and food intake in humans. J Clin Endocrinol Metab. 2003; 88: 3989-92, CrossRef.

Rushing PA, Hagan MM, Seeley RJ, Lutz TA, Woods SC. Amylin: A novel action in the brain to reduce body weight. Endocrinology. 2000; 141: 850-3, CrossRef.

Lutz TA, Geary N, Szabady MM, Del Prete E, Scharrer E. Amylin decreases meal size in rats. Physiol Behav. 1995; 58: 1197-202, CrossRef.

Havel PJ. Peripheral signals conveying metabolic information to the brain: short-term and long-term regulation of food intake and energy homeostasis. Exp Biol Med. 2001; 226: 963-77, PMID.

Benoit SC. Insulin and leptin as adiposity signals. Recent Prog Horm Res. 2004; 59: 267-85, CrossRef.

Flier JS. Obesity Wars: Molecular progress confronts an expanding epidemic. Cell. 2004; 116: 337-50, CrossRef.

Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994; 372: 425-32, CrossRef.

Halaas J, Gajiwala K, Maffei M, Cohen S, Chait B, Rabinowitz D, et al. Weight-reducing effects of the plasma protein encoded by the obese gene. Science. 1995; 269: 543-6, CrossRef.

Farooqi IS, Jebb SA, Langmack G, Lawrence E, Cheetham CH, Prentice AM, et al. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N Engl J Med. 1999; 341: 879-84, CrossRef.

Shi H, Tzameli I, Bjorbaek C, Flier JS. Suppressor of cytokine signaling 3 is a physiological regulator of adipocyte insulin signaling. J Biol Chem. 2004; 279: 34733-40, CrossRef.

Zabolotny JM, Bence-Hanulec KK, Stricker-Krongrad A, Haj F, Wang Y, Minokoshi Y, et al. PTP1B regulates leptin signal transduction in vivo. Dev Cell. 2002; 2: 489-95, CrossRef.

Anini Y, Brubaker PL. Role of leptin in the regulation of glucagon-like peptide-1 secretion. Diabetes. 2003; 52: 252-9, CrossRef.

Burdyga G, Spiller D, Morris R, Lal S, Thompson D., Saeed S, et al. Expression of the leptin receptor in rat and human nodose ganglion neurones. Neuroscience. 2002; 109: 339-47, CrossRef.

Peters JH, Karpiel AB, Ritter RC, Simasko SM. Cooperative activation of cultured vagal afferent neurons by leptin and cholecystokinin. Endocrinology. 2004; 145: 3652-7, CrossRef.

Wang YH, Taché Y, Sheibel AB, Go VL, Wei JY. Two types of leptin-responsive gastric vagal afferent terminals: an in vitro single-unit study in rats. Am J Physiol. 1997 Aug; 273: R833-7, PMID.

Guilmeau S, Buyse M, Tsocas A, Laigneau JP, Bado A. Duodenal leptin stimulates cholecystokinin secretion: evidence of a positive leptin-cholecystokinin feedback loop. Diabetes. 2003; 52: 1664-72, CrossRef.

Burdyga G, Varro A, Dimaline R, Thompson DG, Dockray GJ. Ghrelinreceptors in rat and humannodoseganglia: putative role in regulating CB-1 and MCH receptor abundance. Am J Physiol Gastrointest Liver Physiol. 2006; 290: G1289-97, CrossRef.

Date Y, Murakami N, Toshinai K, Matsukura S, Niijima A, Matsuo H, et al. The role of the gastric afferent vagal nerve in ghrelin-induced feeding and growth hormone secretion in rats. Gastroenterology. 2002; 123: 1120-8, CrossRef.

Cianflone K, Maslowska M, Sniderman AD. Acylation stimulating protein (ASP), an adipocyte autocrine: new directions. Semin Cell Dev Biol. 1999; 10: 31-41, CrossRef.

Sniderman AD, Maslowska M, Cianflone K. Of mice and men (and women) and the acylation-stimulating protein pathway. Curr Opin Lipidol. 2000; 11: 291-6, CrossRef.

Murray I, Sniderman AD, Havel PJ, Cianflone K. Acylation stimulating protein (ASP) deficiency alters postprandial and adipose tissue metabolism in male mice. J Biol Chem. 1999; 274: 36219-25, CrossRef.

Murray I. Reduced body weight, adipose tissue, and leptin levels despite increased energy intake in female mice lacking acylation-stimulating protein. Endocrinology. 2000; 14: 1041-9, CrossRef.

Martinez-Botas J, Anderson JB, Tessier D, Lapillonne A, Chang BH, Quast MJ, et al. Absence of perilipin results in leanness and reverses obesity in Lepr(db/db) mice. Nat Genet. 2000; 26: 474-9, PMID.

Tansey JT, Sztalryd C, Gruia-Gray J, Roush DL, Zee JV, Gavrilova O, et al. Perilipin ablation results in a lean mouse with aberrant adipocyte lipolysis, enhanced leptin production, and resistance to diet-induced obesity. Proc Natl Acad Sci USA. 2001; 98: 6494-9, CrossRef.

Maeda K, Okubo K, Shimomura I, Funahashi T, Matsuzawa Y, Matsubara K. cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (adipose most abundant gene transcript 1). Biochem Biophys Res Commun. 1996; 221: 286-9, CrossRef.

Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J, et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun. 1999; 257: 79-83, CrossRef.

Scherer PE, Williams S, Fogliano M, Baldini G, Lodish HF. A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem. 1995; 270: 26746-9, CrossRef.

Hu E, Liang P, Spiegelman BM. AdipoQ is a novel adipose-specific gene dysregulated in obesity. J Biol Chem. 1996; 271: 10697-703, CrossRef.

Hotta K, Funahashi T, Bodkin NL, Ortmeyer HK, Arita Y, Hansen BC, et al. Circulating concentrations of the adipocyte protein adiponectin are decreased in parallel with reduced insulin sensitivity during the progression to type 2 diabetes in rhesus monkeys. Diabetes. 2001; 50: 1126-33, CrossRef.

Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley RE, et al. Hypoadiponectinemia in obesity and type 2 diabetes: Close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab. 2001; 86: 1930-5, CrossRef.

Coll AP, Farooqi IS, O’Rahilly S. The hormonal control of food intake. Cell. 2007; 129: 251-62, CrossRef.

Rehfeld JF. The new biology of gastrointestinal hormones. Physiol Rev. 1998 Oct;78(4):1087-108, PMID.

Badman MK, Flier JS. The gut and energy balance: Visceral allies in the obesity wars. Science. 2005; 307: 1909-14, CrossRef.

Kojima M, Kangawa K. Ghrelin: structure and function. Physiol Rev. 2005; 85: 495-522, CrossRef.

Tschöp M, Smiley DL, Heiman ML. Ghrelin induces adiposity in rodents. Nature. 2000; 407: 908-13. CrossRef.

Cummings DE, Foster-Schubert KE, Overduin J. Ghrelin and energy balance: focus on current controversies. Curr Drug Targets. 2005; 6: 153-69, CrossRef.

Cummings DE, Weigle DS, Frayo RS, Breen PA, Ma MK, Dellinger EP, et al. Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N Engl J Med. 2002; 346: 1623-30, CrossRef.

Mundinger TO, Cummings DE, Taborsky GJ. Direct stimulation of ghrelin secretion by sympathetic nerves. Endocrinology. 2006; 147: 2893-901, CrossRef.

Drazen DL, Vahl TP, D’Alessio DA, Seeley RJ, Woods SC. Effects of a fixed meal pattern on ghrelin secretion: Evidence for a learned response independent of nutrient status. Endocrinology. 2006; 147: 23-30, CrossRef.

Cowley MA, Smith RG, Diano S, Tschöp M, Pronchuk N, Grove KL, et al. The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron. 2003; 37: 649-61, CrossRef.

Theander-Carrillo C, Wiedmer P, Cettour-Rose P, Nogueiras R, Perez-Tilve D, Pfluger P, Castaneda TR, et al. Ghrelin action in the brain controls adipocyte metabolism. J Clin Invest. 2006; 116: 1983-93, CrossRef.

Wortley KE, del Rincon JP, Murray JD, Garcia K, Iida K, Thorner MO, et al. Absence of ghrelin protects against early-onset obesity. J Clin Invest. 2005; 115: 3573-8, CrossRef.

Zigman JM, Nakano Y, Coppari R, Balthasar N, Marcus JN, Lee CE, et al. Mice lacking ghrelin receptors resist the development of diet-induced obesity. J Clin Invest. 2005; 115: 3564-72, CrossRef.

Popovic V. Ghrelin. Curr Opin Endocrinology and Diabetes. 2006; 13: 70-5, CrossRef.

Zhang JV, Ren PG, Avsian-Kretchmer O, Luo CW, Rauch R, Klein C, et al. Obestatin, a peptide encoded by the ghrelin gene, opposes ghrelin's effects on food intake. Science. 2005; 310: 996-9, CrossRef.

McKee KK, Tan CP, Palyha OC, Liu J, Feighner SD, Hreniuk DL, et al. Cloning and characterization of two human G protein-coupled receptor genes (GPR38 and GPR39) related to the growth hormone secretagogue and neurotensin receptors. Genomics. 1997; 46: 426-34, CrossRef.

Pan W, Tu H, Kastin AJ. Differential BBB interactions of three ingestive peptides: Obestatin, ghrelin, and adiponectin. Peptides. 2006; 27: 911-6, CrossRef.

Nogueiras R, Pfluger P, Tovar S, Arnold M, Mitchell S, Morris A, et al. Effects of obestatin on energy balance and growth hormone secretion in rodents. Endocrinology. 2007; 148: 21-6, CrossRef.

Rehfeld JF. A centenary of gastrointestinal endocrinology. Horm Metab Res. 2004; 36: 735-41, CrossRef.

Reeve JR, Green GM, Chew P, Eysselein VE, Keire DA. CCK-58 is the only detectable endocrine form of cholecystokinin in rat. Am J Physiol Gastrointest Liver Physiol. 2003; 285: G255-65, CrossRef.

Schwartz GJ, McHugh PR, Moran TH. Gastric loads and cholecystokinin synergistically stimulate rat gastric vagal afferents. Am J Physiol. 1993; 265: R872-6, PMID.

Moran TH, McHugh PR. Cholecystokinin suppresses food intake by inhibiting gastric emptying. Am J Physiol.1982; 242: R491-7, PMID.

Kissileff HR, Carretta JC, Geliebter A, Pi-Sunyer FX. Cholecystokinin and stomach distension combine to reduce food intake in humans. Am J Physiol Regul Integr Comp Physiol. 2003; 285: R992-8, CrossRef.

Kopin AS, Mathes WF, McBride EW, Nguyen M, Al-Haider W, Schmitz F, et al. The cholecystokinin-A receptor mediates inhibition of food intake yet is not essential for the maintenance of body weight. J Clin Invest. 1999; 103: 383-91, CrossRef.

Moran TH, Ameglio PJ, Peyton HJ, Schwartz GJ, McHugh PR. Blockade of type A, but not type B, CCK receptors postpones satiety in rhesus monkeys. Am J Physiol. 1993; 265: R620-4, PMID.

Reidelberger RD, O'Rourke MF. Potent cholecystokinin antagonist L 364718 stimulates food intake in rats. Am J Physiol. 1989; 257: R1512-8, PMID.

Beglinger C, Degen L, Matzinger D, D'Amato M, Drewe J. Loxiglumide, a CCK-A receptor antagonist, stimulates calorie intake and hunger feelings in humans. Am J Physiol Regul Integr Comp Physiol. 2001;2 80: R1149-54, PMID.

West DB, Fey D, Woods SC. Cholecystokinin persistently suppresses meal size but not food intake in free-feeding rats. Am J Physiol. 1984; 246: R776-87, PMID.

Muurahainen N, Kissileff HR, Derogatis AJ, Xavier Pi-Sunyer F. Effects of cholecystokinin-octapeptide (CCK-8) on food intake and gastric emptying in man. Physiol Behav. 1988; 44: 645-9, CrossRef.

Fuxe K, Agnati LF, Vanderhaeghen JJ, Tatemoto K, Andersson K, Eneroth P, et al. Cholecystokinin neuron systems and their interactions with the presynaptic features of the dopamine neuron systems. A morphometric and neurochemical analysis involving studies on the action of cholecystokinin-8 and cholecystokinin-58. Ann NY Acad Sci. 1985; 448: 231-54, CrossRef.

Bonetto V, Jornvall H, Andersson M, Renlund S, Mutt V, Sillard R. Isolation and characterization of sulphated and nonsulphated forms of cholecystokinin-58 and their action on gallbladder contraction. Eur J Biochem. 1999; 264: 336-40, CrossRef.

Tatemoto K, Jörnvall H, Siimesmaa S, Halldén G, Mutt V. Isolation and characterization of cholecystokinin-58 (CCK-58) from porcine brain. FEBS Lett. 1984; 174: 289-93, CrossRef.

Kreis M, Zittel T, Raybould H, Reeve J, Grundy D. Prolonged intestinal afferent nerve discharge in response to cholecystokinin-58 compared to cholecystokinin-8 in rats. Neurosci Lett. 1997; 230: 89-92, CrossRef.

Raboin SJ, Reeve JR, Green GM, Cox JE, Gibbs J, Perez LJ, et al. Differential effects of exogenous CCK-8 and CCK-58 on food intake. Appetite. 2007; 49: 322, CrossRef.

Green GM, Reeve JR Jr. Unique activities of cholecystokinin-58; physiological and pathological relevance. Curr Opin Endocrinol Diabetes Obes. 2008; 15: 48-53, CrossRef.

Broberger C, Hökfelt T. Hypothalamic and vagal neuropeptide circuitries regulating food intake. Physiol Behav. 2001; 74: 669-82, CrossRef.

Moriarty P, Dimaline R, Thompson D., Dockray G. Characterization of cholecystokininA and cholecystokininB receptors expressed by vagal afferent neurons. Neuroscience. 1997; 79: 905-13, CrossRef.

Burdakov D, Ashcroft FM. Cholecystokinin tunes firing of an electrically distinct subset of arcuate nucleus neurons by activating A-Type potassium channels. J Neurosci. 2002; 22: 6380-7, PMID.

Cano V, Caicoya E, Ruiz-Gayo M. Effect of peripheral cholecystokinin receptor agonists on c-Fos expression in brain sites mediating food consumption in rats. Neurosci Lett. 2003; 343: 13-6, CrossRef.

Noble F, Wank SA, Crawley JN, Bradwejn J, Seroogy KB, Hamon M, et al. International Union of Pharmacology. XXI. Structure, distribution, and functions of cholecystokinin receptors. Pharmacol Rev. 1999; 51: 745-81, PMID.

Clerc P, Coll Constans MG, Lulka H, Broussaud S, Guigné C, Leung-Theung-Long S, et al. Involvement of cholecystokinin 2 receptor in food intake regulation: Hyperphagia and increased fat deposition in cholecystokinin 2 receptor-deficient mice. Endocrinology. 2007; 148: 1039-49, CrossRef.

Acuna-Goycolea C, van den Pol AN. Peptide YY(3-36) inhibits both anorexigenic proopiomelanocortin and orexigenic neuropeptide Y neurons: implications for hypothalamic regulation of energy homeostasis. J Neurosci. 2005; 25: 10510-9, CrossRef.

le Roux CW, Batterham RL, Aylwin SJ, Patterson M, Borg CM, Wynne KJ, et al. Attenuated peptide YY release in obese subjects is associated with reduced satiety. Endocrinology. 2006; 147: 3-8, CrossRef.

Vazquez Roque MI, Camilleri M, Stephens DA, Jensen MD, Burton DD, Baxter KL, et al. Gastric sensorimotor functions and hormone profile in normal weight, overweight, and obese people. Gastroenterology. 2006; 131: 1717-24, CrossRef.

Ashby D, Bloom SR. Recent progress in PYY research: An update report for 8th NPY meeting. Peptides. 2007; 28: 198-202, CrossRef.

Borg CM, le Roux CW, Ghatei MA, Bloom SR, Patel AG, Aylwin SJB. Progressive rise in gut hormone levels after Roux-en-Y gastric bypass suggests gut adaptation and explains altered satiety. Br J Surg. 2006; 93: 210-5, CrossRef.

Batterham RL, Cowley MA, Small CJ, Herzog H, Cohen MA, Dakin CL, et al. Gut hormone PYY3-36 physiologically inhibits food intake. Nature. 2002; 418: 650-4, CrossRef.

Batterham RL, Cohen MA, Ellis SM, Le Roux CW, Withers DJ, Frost GS, et al. Inhibition of food intake in obese subjects by peptide YY 3-36 . N Engl J Med. 2003; 349: 941-8, CrossRef.

Boey D, Sainsbury A, Herzog H. The role of peptide YY in regulating glucose homeostasis. Peptides. 2007; 28: 390-5, CrossRef.

Sodowski K, Zwirska-Korczala K, Kuka D, Kukla M, Budziszewska P, Czuba B, et al. Basal and postprandial gut peptides affecting food intake in lean and obese pregnant women. J Physiol Pharmacol. 2007; 58: 37-52, PMID.

Grudell AB, Camilleri M. The role of peptide YY in integrative gut physiology and potential role in obesity. Curr Opin Endocrinol and Diabetes. 2007; 14: 52-7, CrossRef.

Chandarana K, Batterham R. Peptide YY. Curr Opin Endocrinol and Diabetes. 2008; 15: 65-72, CrossRef.

Abbott CA, Bloom SR. Peptide YY. Curr Opin Endocrinol and Diabetes. 2006; 13: 31-5, CrossRef.

Boey D, Herzog H. Peptide YY: lessons from mouse models. Curr Opin Endocrinol and Diabetes. 2006; 13: 65-9, CrossRef.

Hayes MR, Covasa M. Dorsal hindbrain 5-HT3 receptors participate in control of meal size and mediate CCK-induced satiation. Brain Res. 2006; 1103: 99-107, CrossRef.

Kieffer TJ, McIntosh CH, Pederson RA. Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagon-like peptide 1 in vitro and in vivo by dipeptidyl peptidase IV. Endocrinology. 1995; 136: 3585-96, CrossRef.

Blonde L, Rosenstock J, Triplitt C. What are incretins, and how will they influence the management of type 2 diabetes? J Manag Care Pharm. 2006; 12 (Suppl A): S2-12, PMID.

Drucker DJ. The role of gut hormones in glucose homeostasis. J Clin Invest. 2007; 117: 24-32, CrossRef.

Vilsboll T, Krarup T, Deacon CF, Madsbad S, Holst JJ. Reduced postprandial concentrations of intact biologically active glucagon-like peptide 1 in type 2 diabetic patients. Diabetes. 2001; 50: 609-13, CrossRef.

D’Alessio DA, Vogel R, Prigeon R, Laschansky E, Koerker D, Eng J, et al. Elimination of the action of glucagon-like peptide 1 causes an impairment of glucose tolerance after nutrient ingestion by healthy baboons. J Clin Invest. 1996; 97: 133-8, CrossRef.

Edwards CM, Todd JF, Mahmoudi M, Wang Z, Wang RM, Ghatei MA, et al. Glucagon-like peptide 1 has a physiological role in the control of postprandial glucose in humans: studies with the antagonist exendin 9-39. Diabetes.1999; 48: 86-93, CrossRef.

Martins C, Morgan LM, Bloom SR, Robertson MD. Effects of exercise on gut peptides, energy intake and appetite. J Endocrinol. 2007; 193: 251-8, CrossRef.

Verdich C, Toubro S, Buemann B, Lysgård Madsen J, Juul Holst J, Astrup A. The role of postprandial releases of insulin and incretin hormones in meal-induced satiety: Effect of obesity and weight reduction. Int J Obes Relat Metab Disord. 2001; 25: 1206-14, CrossRef.

Elahi D, Egan JM, Shannon RP, Meneilly GS, Khatri A, Habener JF, et al. GLP-1 (9-36) amide, cleavage product of GLP-1 (7-36) amide, is a glucoregulatory peptide. Obesity. 2008; 16: 1501-9, CrossRef.

Batterham RL, Bloom SR. The gut hormone peptide YY regulates appetite. Ann NY Acad Sci. 2003; 994: 162-8, CrossRef.

Unniappan S, McIntosh CHS, Demuth H-U, Heiser U, Wolf R, Kieffer TJ. Effects of dipeptidyl peptidase IV on the satiety actions of peptide YY. Diabetologia. 2006; 49: 1915-23, CrossRef.

Perez-Tilve D, Gonzalez-Matias L, Alvarez-Crespo M, Leiras R, Tovar S, Dieguez C, et al. Exendin-4 potently decreases ghrelin levels in fasting rats. Diabetes. 2006; 56: 143-51, CrossRef.

Aulinger B, DʼAlessio D. Glucagon-like peptide 1: continued advances, new targets and expanding promise as a model therapeutic. Curr Opin Endocrinol and Diabetes. 2007; 14: 68-73, CrossRef.

Dham S, Banerji MA. The brain-gut axis in regulation of appetite and obesity. Pediatr Endocrinol Rev. 2006; 3 (Suppl 4): 544-54, PMID.

Miyawaki K, Yamada Y, Ban N, Ihara Y, Tsukiyama K, Zhou H, et al. Inhibition of gastric inhibitory polypeptide signaling prevents obesity. Nat Med. 2002; 8: 738-42, CrossRef.

Miyawaki K, Yamada Y, Yano H, Niwa H, Ban N, Ihara Y, et al. Glucose intolerance caused by a defect in the entero-insular axis: A study in gastric inhibitory polypeptide receptor knockout mice. Proc Natl Acad Sci USA. 1999; 96: 14843-7, CrossRef.

Song DH, Wolfe MM. Glucose-dependent insulinotropic polypeptide and its role in obesity. Curr Opin Endocrinol and Diabetes. 2007; 14: 46-51, CrossRef.

Huda MSB, Wilding JPH, Pinkney JH. Gut peptides and the regulation of appetite. Obes Rev. 2006; 7: 163-82, CrossRef.

Cohen MA, Ellis SM, Le Roux CW, Batterham RL, Park A, Patterson M, et al. Oxyntomodulin suppresses appetite and reduces food intake in humans. J Clin Endocrinol Metab. 2003; 88: 4696-701, CrossRef.

Wynne K, Park AJ, Small CJ, Meeran K, Ghatei MA, Frost GS, et al. Oxyntomodulin increases energy expenditure in addition to decreasing energy intake in overweight and obese humans: a randomised controlled trial. Int J Obes. 2006; 30: 1729-36, CrossRef.

Druce M, Ghatei M. Oxyntomodulin. Curr Opin Endocrinol and Diab. 2006; 13: 49-55, CrossRef.

Merali Z, McIntosh J, Anisman H. Role of bombesin-related peptides in the control of food intake. Neuropeptides. 1999; 33: 376-86, CrossRef.

Figlewicz DP, Stein LJ, Woods SC, Porte D Jr. Acute and chronic gastrin-releasing peptide decreases food intake in baboons. Am J Physiol. 1985; 248: R578-83, PMID.

Gutzwiller JP, Drewe J, Hildebrand P, Rossi L, Lauper JZ, Beglinger C. Effect of intravenous human gastrin-releasing peptide on food intake in humans. Gastroenterology. 1994; 106: 1168-73, PMID.

Yeǧen BÇ, Gürbüz V, Coşkun T, Bozkurt A, Kurtel H, Alican I, et al. Inhibitory effects of gastrin releasing peptide on gastric emptying in rats. Regul Pept. 1996; 61: 175-80, CrossRef.

Figlewicz DP, Sipols A, Porte D, Woods SC. Intraventricular bombesin can decrease single meal size in the baboon. Brain Res Bull. 1986; 17: 535-7, CrossRef.

Gonzalez N, Moody TW, Igarashi H, Ito T, Jensen RT. Bombesin-related peptides and their receptors: recent advances in their role in physiology and disease states. Curr Opin Endocrinoln and Diabetes. 2008; 15: 58-64, CrossRef.

Fujimoto K, Fukagawa K, Sakata T, Tso P. Suppression of food intake by apolipoprotein A-IV is mediated through the central nervous system in rats. J Clin Invest. 1993; 91: 1830-3, CrossRef.

Fujimoto K, Machidori H, Iwakiri R, Yamamoto K, Fujisaki J, Sakata T, et al. Effect of intravenous administration of apolipoprotein A-IV on patterns of feeding, drinking and ambulatory activity of rats. Brain Res. 1993; 608: 233-7, CrossRef.

Tso P, Sun W, Liu M. Gastrointestinal satiety signals IV. Apolipoprotein A-IV. Am J Physiol Gastrointest Liver Physiol. 2004; 286: G885-90, CrossRef.

Fu J, Gaetani S, Oveisi F, Lo Verme J, Serrano A, Rodríguez de Fonseca F, et al. Oleylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-α. Nature. 2003; 425: 90-3, CrossRef.

Rodríguez de Fonseca F, Navarro M, Gómez R, Escuredo L, Nava F, Fu J, et al. An anorexic lipid mediator regulated by feeding. Nature. 2001; 414: 209-12, CrossRef.

Gaetani S, Oveisi F, Piomelli D. Modulation of meal pattern in the rat by the anorexic lipid mediator oleoylethanolamide. Neuropsychopharmacology. 2003; 28: 1311-6, CrossRef.

Berger J, Moller DE. The mechanisms of action of PPARs. Annu Rev Med. 2002; 53: 409-35, CrossRef.

Berger JP. Role of PPARγ, transcriptional cofactors, and adiponectin in the regulation of nutrient metabolism, adipogenesis and insulin action: view from the chair. Int J Obes. 2005; 29: S3-4, CrossRef.

Guzman M, Lo Verme J, Fu J, Oveisi F, Blazquez C, Piomelli D. Oleoylethanolamide stimulates lipolysis by activating the nuclear receptor peroxisome proliferator-activated receptor alpha (PPAR-alpha). J Biol Chem. 2004; 279: 27849-54, CrossRef.

Yang Y, Chen M, Georgeson KE, Harmon CM. Mechanism of oleoylethanolamide on fatty acid uptake in small intestine after food intake and body weight reduction. Am J Physiol Regul Integr Comp Physiol. 2006; 292: R235-41, CrossRef.

Hopkins DFC, Williams G. Insulin receptors are widely distributed in human brain and bind human and porcine insulin with equal affinity. Diabet Med. 1997; 14: 1044-50, CrossRef.

Schwartz MW, Bergman RN, Kahn SE, Taborsky GJ, Fisher LD, Sipols AJ, et al. Evidence for entry of plasma insulin into cerebrospinal fluid through an intermediate compartment in dogs. Quantitative aspects and implications for transport. J Clin Invest. 1991; 88: 1272-81, CrossRef.

Niswender KD, Schwartz MW. Insulin and leptin revisited: adiposity signals with overlapping physiological and intracellular signaling capabilities. Front Neuroendocrinol. 2003; 24: 1-10, CrossRef.

Obici S, Zhang BB, Karkanias G, Rossetti L. Hypothalamic insulin signaling is required for inhibition of glucose production. Nat Med. 2002; 8: 1376-82, CrossRef.

Brüning JC, Gautam D, Burks DJ, Gillette J, Schubert M, Orban PC, et al. Role of brain insulin receptor in control of body weight and reproduction. Science. 2000; 289: 2122-5, CrossRef.

Schmidt PT, Näslund E, Grybäck P, Jacobsson H, Holst JJ, Hilsted L, et al. A role for pancreatic polypeptide in the regulation of gastric emptying and short-term metabolic control. J Clin Endocrinol Metab. 2005; 90: 5241-6, CrossRef.

Whitehouse F, Kruger DF, Fineman M, Shen L, Ruggles JA, Maggs DG, et al. A randomized study and open-label extension evaluating the long-term efficacy of pramlintide as an adjunct to insulin therapy in type 1 diabetes. Diabetes Care. 2002; 25: 724-30, CrossRef.

Maffei M, Halaas J, Ravussin E, Pratley RE, Lee GH, Zhang Y, et al. Leptin levels in human and rodent: Measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med. 1995; 1: 1155-61, CrossRef.

Satoh N, Ogawa Y, Katsuura G, Numata Y, Tsuji T, Hayase M, et al. Sympathetic activation of leptin via the ventromedial hypothalamus: leptin-induced increase in catecholamine secretion. Diabetes.1999; 48: 1787-93, CrossRef.

Eckel LA, Langhans W, Kahler A, Campfield LA, Smith FJ, Geary N. Chronic administration of OB protein decreases food intake by selectively reducing meal size in female rats. Am J Physiol. 1998; 275: R186-93, PMID.

Farooqi IS, Wangensteen T, Collins S, Kimber W, Matarese G, Keogh JM, et al. Clinical and molecular genetic spectrum of congenital deficiency of the leptin receptor. N Engl J Med. 2007; 356: 237-47, CrossRef.

Dhillon H, Zigman JM, Ye C, Lee CE, McGovern RA, Tang V, et al. Leptin directly activates SF1 neurons in the VMH, and this action by leptin is required for normal body-weight homeostasis. Neuron. 2006; 49: 191-203, CrossRef.

Cota D, Proulx K, Smith KA, Kozma SC, Thomas G, Woods SC, et al. Hypothalamic mTOR signaling regulates food intake. Science. 2006; 312: 927-30, CrossRef.

Chen K, Li F, Li J, Cai H, Strom S, Bisello A, et al. Induction of leptin resistance through direct interaction of C-reactive protein with leptin. Nat Med. 2006; 12: 425-32, CrossRef.

Frost G, Brynes AE, Ellis S, Milton JE, Nematy M, Philippou E. Nutritional influences on gut hormone release. Curr Opin Endocrinol and Diabetes. 2006; 13: 42-8, CrossRef.

Erdmann J, Lippl F, Schusdziarra V. Differential effect of protein and fat on plasma ghrelin levels in man. Regul Pept. 2003; 116: 101-7. CrossRef.

Blom WA, Stafleu A, de Graaf C, Kok FJ, Schaafsma G, Hendriks HF. Ghrelin response to carbohydrate-enriched breakfast is related to insulin. Am J Clin Nutr. 2005; 81: 367-75, PMID.

Monteleone P, Bencivenga R, Longobardi N, Serritella C, Maj M. Differential responses of circulating ghrelin to high-fat or high-carbohydrate meal in healthy women. J Clin Endocrinol Metab. 2003; 88: 5510-4, CrossRef.

Weigle DS, Cummings DE, Newby PD, Breen PA, Frayo RS, Matthys CC, et al. Roles of leptin and ghrelin in the loss of body weight caused by a low fat, high carbohydrate diet. J Clin Endocrinol Metab. 2003; 88: 1577-86, CrossRef.

Heath R. Vagal stimulation exaggerates the inhibitory ghrelin response to oral fat in humans. J Endocrinol. 2004; 180: 273-81, CrossRef.

Kong MF, Chapman I, Goble E, Wishart J, Wittert G, Morris H, et al. Effects of oral fructose and glucose on plasma GLP-1 and appetite in normal subjects. Peptides. 1999; 20: 545-51, CrossRef.

Beysen C, Karpe F, Fielding BA, Clark A, Levy JC, Frayn KN. Interaction between specific fatty acids, GLP-1 and insulin secretion in humans. Diabetologia. 2002; 45: 1533-41, CrossRef.

O’Donovan D, Horowitz M, Russo A, Feinle-Bisset C, Murolo N, Gentilcore D, et al. Effects of lipase inhibition on gastric emptying of, and on the glycaemic, insulin and cardiovascular responses to, a high-fat/carbohydrate meal in type 2 diabetes. Diabetologia. 2004; 47: 2208-14, CrossRef.

Pilichiewicz A, O’Donovan D, Feinle C, Lei Y, Wishart JM, Bryant L, et al. Effect of lipase inhibition on gastric emptying of, and the glycemic and incretin responses to, an oil/aqueous drink in type 2 diabetes mellitus. J Clin Endocrinol Metab. 2003; 88: 3829-34, CrossRef.

Feinle C, O’Donovan D, Doran S, Andrews JM, Wishart J, Chapman I, et al. Effects of fat digestion on appetite, APD motility, and gut hormones in response to duodenal fat infusion in humans. Am J Physiol Gastrointest Liver Physiol. 2003; 284: G798-807, CrossRef.

Pedersen-Bjergaard U, Høt U, Kelbæk H, Schifter S, Rehfeld JF, Faber J, et al. Influence of meal composition on postprandial peripheral plasma concentrations of vasoactive peptides in man. Scand J Clin Lab Invest. 1996; 56: 497-503, CrossRef.

Adrian TE, Ferri GL, Bacarese-Hamilton AJ, Fuessl HS, Polak JM, Bloom SR. Human distribution and release of a putative new gut hormone, peptide YY. Gastroenterology.1985; 89: 1070-7, PMID.

Greeley GH, Hashimoto T, Izukura M, Gomez G, Jeng J, Hill FLC, et al. A comparison of intraduodenally and intracolonically administered nutrients on the release of peptide-YY in the dog. Endocrinology. 1989; 125: 1761-5, CrossRef.

Liddle RA, Goldfine ID, Rosen MS, Taplitz RA, Williams JA. Cholecystokinin bioactivity in human plasma. Molecular forms, responses to feeding, and relationship to gallbladder contraction. J Clin Invest. 1985; 75: 1144-52, CrossRef.

Froehlich F, Gonvers JJ, Fried M. Role of nutrient fat and cholecystokinin in regulation of gallbladder emptying in man. Dig Dis Sci. 1995; 40: 529-33, CrossRef.

Schwizer W, Asal K, Kreiss C, Mettraux C, Borovicka J, Rémy B, et al. Role of lipase in the regulation of upper gastrointestinal function in humans. Am J Physiol. 1997; 273: G612-20, PMID.

Hildebrand P, Petrig C, Burckhardt B, Ketterer S, Lengsfeld H, Fleury A, et al. Hydrolysis of dietary fat by pancreatic lipase stimulates cholecystokinin release. Gastroenterology. 1998; 114: 123-9, CrossRef.

Feinle C, Rades T, Otto B, Fried M. Fat digestion modulates gastrointestinal sensations induced by gastric distention and duodenal lipid in humans. Gastroenterology. 2001; 120: 1100-7, CrossRef.

Hopman WPM, Jansen JBMJ, Lamers CBHW. Comparative study of the effects of equal amounts of fat, protein, and starch on plasma cholecystokinin in man. Scand J Gastroenterol. 1985; 20: 843-7, CrossRef.

Feinle-Bisset C. Fat digestion is required for suppression of ghrelin and stimulation of peptide YY and pancreatic polypeptide secretion by intraduodenal lipid. Am J Physiol Endocrinol Metab. 2005; 289: E948-5, CrossRef.

Little TJ, Horowitz M, Feinle-Bisset C. Modulation by high-fat diets of gastrointestinal function and hormones associated with the regulation of energy intake: implications for the pathophysiology of obesity. Am J Clin Nutr. 2007; 86: 531-41, PMID.

Tschop M, Weyer C, Tataranni PA, Devanarayan V, Ravussin E, Heiman ML. Circulating ghrelin levels are decreased in human obesity. Diabetes. 2001; 50: 707-9, CrossRef.

Baranowska B, Radzikowska M, Wasilewska-Dziubinska E, Roguski K, Borowiec M. Disturbed release of gastrointestinal peptides in anorexia nervosa and in obesity. Diabetes Obes Metab. 2000; 2: 99-103, CrossRef.

Cunningham KM, Daly J, Horowitz M, Read NW. Gastrointestinal adaptation to diets of differing fat composition in human volunteers. Gut. 1991; 32: 483-6, CrossRef.

Covasa M, Ritter RC. Adaptation to high-fat diet reduces inhibition of gastric emptying by CCK and intestinal oleate. Am J Physiol Regul Integr Comp Physiol. 2000; 278: R166-70, PMID.

Brown NJ, Rumsey RD, Read NW. Gastrointestinal adaptation to enhanced small intestinal lipid exposure. Gut. 1994; 35: 1409-12, CrossRef.

Boyd KA, O’Donovan DG, Doran S, Wishart J, Chapman IM, Horowitz M, et al. High-fat diet effects on gut motility, hormone, and appetite responses to duodenal lipid in healthy men. Am J Physiol Gastrointest Liver Physiol. 2002; 284: G188-96, CrossRef.

French SJ, Murray B, Rumsey RD, Fadzlin R, Read NW. Adaptation to high-fat diets: effects on eating behaviour and plasma cholecystokinin. Br J Nutr. 1995; 73: 179-89, CrossRef.

Spannagel AW, Nakano I, Tawil T, Chey WY, Liddle RA, Green GM. Adaptation to fat markedly increases pancreatic secretory response to intraduodenal fat in rats. Am J Physiol. 1996; 270: G128-35, PMID.

Lee HM. Ghrelin, a new gastrointestinal endocrine peptide that stimulates insulin secretion: Enteric distribution, ontogeny, influence of endocrine, and dietary manipulations. Endocrinology. 2002; 143: 185-90, CrossRef.

Adams SH1, Lei C, Jodka CM, Nikoulina SE, Hoyt JA, Gedulin B, et al. PYY[3-36] administration decreases the respiratory quotient and reduces adiposity in diet-induced obese mice. J Nutr. 2006 Jan; 136: 195-201, PMID.

Sternini C, Anselmi L, Rozengurt E. Enteroendocrine cells: a site of “taste” in gastrointestinal chemosensing. Cure Opin Endocrinol and Diabetes. 2008; 15: 73-8, CrossRef.

Lindemann B. Receptors and transduction in taste. Nature. 2001; 413: 219-25, CrossRef.

Chandrashekar J, Mueller KL, Hoon MA, Adler E, Feng L, Guo W, et al. T2Rs function as bitter taste receptors. Cell. 2000; 100: 703-11, CrossRef.

Li X, Staszewski L, Xu H, Durick K, Zoller M, Adler E. Human receptors for sweet and umami taste. Proc Natl Acad SciUSA. 2002; 99: 4692-6, CrossRef.

Adler E, Hoon MA, Mueller KL, Chandrashekar J, Ryba NJ., Zuker CS. A novel family of mammalian taste receptors. Cell. 2000; 100: 693-702, CrossRef.

Margolskee RF. Molecular mechanisms of bitter and sweet taste transduction. J Biol Chem. 2001; 277: 1-4, CrossRef.

Caicedo A, Pereira E, Margolskee RF, Roper SD. Role of the G-protein subunit alpha-gustducin in taste cell responses to bitter stimuli. J Neurosci. 2003; 23: 9947-52, PMID.

Wong GT, Gannon KS, Margolskee RF. Transduction of bitter and sweet taste by gustducin. Nature. 1996; 381: 796-800, CrossRef.

Rozengurt N, Wu SV, Chen MC, Huang C, Sternini C, Rozengurt E. Colocalization of the alpha-subunit of gustducin with PYY and GLP-1 in L cells of human colon. Am J Physiol Gastrointest Liver Physiol. 2006; 291: G792-802, CrossRef.

Wu SV, Chen MC, Rozengurt E. Genomic organization, expression, and function of bitter taste receptors (T2R) in mouse and rat. Physiol Genomics. 2005; 22: 139-49, CrossRef.

Wu SV, Rozengurt N, Yang M, Young SH, Sinnett-Smith J, Rozengurt E. Expression of bitter taste receptors of the T2R family in the gastrointestinal tract and enteroendocrine STC-1 cells. Proc Nat; Acad Scie USA. 2002; 99: 2392-7, CrossRef.

Dyer J, Salmon KSH, Zibrik L, Shirazi-Beechey SP. Expression of sweet taste receptors of the T1R family in the intestinal tract and enteroendocrine cells. Biochem Soc Trans. 2005; 33: 302-5, CrossRef.

Mace OJ, Affleck J, Patel N, Kellett GL. Sweet taste receptors in rat small intestine stimulate glucose absorption through apical GLUT2. J Physiol. 2007; 582: 379-92, CrossRef.

Margolskee RF, Dyer J, Kokrashvili Z, Salmon KSH, Ilegems E, Daly K, et al. T1R3 and gustducin in gut sense sugars to regulate expression of Na+-glucose cotransporter 1. Proc Natl Acad Sci USA. 2007;104: 15075-80, CrossRef.

Bezencon C, le Coutre J, Damak S. Taste-signaling proteins are coexpressed in solitary intestinal epithelial cells. Chem Senses. 2006; 32: 41-9, CrossRef.

Sternini C. Taste receptors in the gastrointestinal tract. IV. functional implications of bitter taste receptors in gastrointestinal chemosensing. Am J Physiol Gastrointest Liver Physiol. 2006; 292: G457-61, CrossRef.

Hofer D, Drenckhahn D. Identification of the taste cell G-protein, alpha-gustducin, in brush cells of the rat pancreatic duct system. Histochem Cell Biol. 1998; 110: 303-9, CrossRef.

Hofer D, Puschel B, Drenckhahn D. Taste receptor-like cells in the rat gut identified by expression of alpha-gustducin. Proc Natl Acad Sci USA. 1996; 93: 6631-4, CrossRef.

Atkinson TJ. Central and peripheral neuroendocrine peptides and signalling in appetite regulation: considerations for obesity pharmacotherapy. Obes Rev. 2008; 9: 108-20, CrossRef.

Halatchev IG, Ellacott KLJ, Fan W, Cone RD. Peptide YY 3–36 inhibits food intake in mice through a melanocortin-4 receptor-independent mechanism. Endocrinology. 2004; 145: 2585-90, CrossRef.

Kuvshinoff BW, Rudnicki M, McFadden DW. The effect of SMS 201-995 on meal and CCK-stimulated peptide YY release. J Surg Res.1991; 50: 425-9, CrossRef.

Padwal R, Li SK, Lau DCW. Long-term pharmacotherapy for overweight and obesity: a systematic review and meta-analysis of randomized controlled trials. Int J Obes Relat Metab Disord. 2003; 27: 1437-46, CrossRef.

Li Z, Maglione M, Tu W, Mojica W, Arterburn D, Shugarman LR, et al. Meta-analysis: Pharmacologic treatment of obesity. Ann Intern Med. 2005; 142: 532-46, CrossRef.

Smith GP, Gibbs J. Cholecystokinin: a putative satiety signal. Pharmacol Biochem Behav. 1975; 3 (Suppl 1): 135-8, PMID.

Talsania T, Anini Y, Siu S, Drucker DJ, Brubaker PL. Peripheral exendin-4 and peptide YY 3-36 synergistically reduce food intake through different mechanisms in mice . Endocrinology. 2005; 146: 3748-56, CrossRef.

Neary NM, Small CJ, Druce MR, Park AJ, Ellis SM, Semjonous NM, et al. Peptide YY 3–36 and glucagon-like peptide-1 7-36 inhibit food intake additively. Endocrinology. 2005; 146: 5120-7, CrossRef.




DOI: https://doi.org/10.18585/inabj.v1i3.99

Copyright (c) 2009 The Prodia Education and Research Institute

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

 

Indexed by:

                  

               

                   

 

 

The Prodia Education and Research Institute