Dependence of Melting Process on Size and Edge Type of Graphene Nanoribbon

Nguyen Thi Thuy Hang
Author affiliations

Authors

  • Nguyen Thi Thuy Hang Ho Chi Minh city University of Technology, VNU-HCM

DOI:

https://doi.org/10.15625/0868-3166/26/4/8805

Keywords:

graphene nanoribbon, armchair, zigzag, size dependence, defects, phase transition.

Abstract

The study of variation of the size, armchair and zigzag types effects on the melting process of graphene nanoribbon. A numerical  thermodynamical model has been devoted for the study. The phase transition has first order behaviour. The formation of different defects, ring size and coordination number is dependent on the size and the edge type of GNR. The nuclei of heating appear at temperature around 2300K and that can be considered as pre-melting point. The melting process shows the case that the results of Berezinsky-Kosterlitz-Thouless-Nelson-Halperin-Young (BKTNHY) theory cannot be applied.

 

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

K. Novoselov, A.K. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, S. Dubonos, A. Firsov, nature 438 (2005) 197. DOI: https://doi.org/10.1038/nature04233

Y. Zhang, Z. Jiang, J. Small, M. Purewal, Y.-W. Tan, M. Fazlollahi, J. Chudow, J. Jaszczak, H. Stormer, P. Kim, Physical review letters 96 (2006) 136806. DOI: https://doi.org/10.1103/PhysRevLett.96.136806

A.K. Geim, K.S. Novoselov, Nature materials 6 (2007) 183. DOI: https://doi.org/10.1038/nmat1849

I. Meric, M.Y. Han, A.F. Young, B. Ozyilmaz, P. Kim, K.L. Shepard, Nature nanotechnology 3 (2008) 654. DOI: https://doi.org/10.1038/nnano.2008.268

W.L. Wang, S. Meng, E. Kaxiras, Nano Letters 8 (2008) 241. DOI: https://doi.org/10.1021/nl072548a

K. Nakada, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Physical Review B 54 (1996) 17954. DOI: https://doi.org/10.1103/PhysRevB.54.17954

Y.W. Son, M.L. Cohen, S.G. Louie, Physical review letters 97 (2006) 216803. DOI: https://doi.org/10.1103/PhysRevLett.97.216803

M.Y. Han, B. Özyilmaz, Y. Zhang, P. Kim, Physical review letters 98 (2007) 206805. DOI: https://doi.org/10.1103/PhysRevLett.98.206805

L. Tapasztó, G. Dobrik, P. Lambin, L.P. Biró, Nature nanotechnology 3 (2008) 397. DOI: https://doi.org/10.1038/nnano.2008.149

A. Savvatimskiy, Carbon 43 (2005) 1115. DOI: https://doi.org/10.1016/j.carbon.2004.12.027

F. Colonna, J. Los, A. Fasolino, E. Meijer, Physical Review B 80 (2009) 134103. DOI: https://doi.org/10.1103/PhysRevB.80.134103

K. Zakharchenko, A. Fasolino, J. Los, M. Katsnelson, Journal of Physics: Condensed Matter 23 (2011) 202202. DOI: https://doi.org/10.1088/0953-8984/23/20/202202

G.D. Lee, C. Wang, E. Yoon, N.M. Hwang, K. Ho, Physical Review B 81 (2010) 195419. DOI: https://doi.org/10.1103/PhysRevB.81.195419

M.S. Fuhrer, C.N. Lau, A.H. MacDonald, MRS bulletin 35 (2010) 289. DOI: https://doi.org/10.1557/mrs2010.551

M.Z. Bazant, E. Kaxiras, J. Justo, Physical Review B 56 (1997) 8542. DOI: https://doi.org/10.1103/PhysRevB.56.8542

J.F. Justo, M.Z. Bazant, E. Kaxiras, V. Bulatov, S. Yip, Physical review B 58 (1998) 2539. DOI: https://doi.org/10.1103/PhysRevB.58.2539

N. Marks, Physical Review B 63 (2000) 035401. DOI: https://doi.org/10.1103/PhysRevB.63.035401

F.H. Stillinger, T.A. Weber, Physical review B 31 (1985) 5262. DOI: https://doi.org/10.1103/PhysRevB.31.5262

D.W. Brenner, Physical Review B 42 (1990) 9458. DOI: https://doi.org/10.1103/PhysRevB.42.9458

D.W. Brenner, O.A. Shenderova, J.A. Harrison, S.J. Stuart, B. Ni, S.B. Sinnott, Journal of Physics: Condensed Matter 14 (2002) 783. DOI: https://doi.org/10.1088/0953-8984/14/4/312

J. Tersoff, Physical review letters 56 (1986) 632. DOI: https://doi.org/10.1103/PhysRevLett.56.632

J. Tersoff, Physical Review Letters 61 (1988) 2879. DOI: https://doi.org/10.1103/PhysRevLett.61.2879

M. Baskes, Physical review letters 59 (1987) 2666. DOI: https://doi.org/10.1103/PhysRevLett.59.2666

M. Finnis, J. Sinclair, Philosophical Magazine A 50 (1984) 45. DOI: https://doi.org/10.1080/01418618408244210

I. Oleinik, D. Pettifor, Physical Review B 59 (1999) 8500. DOI: https://doi.org/10.1103/PhysRevB.59.8500

D. Pettifor, Physical review letters 63 (1989) 2480. DOI: https://doi.org/10.1103/PhysRevLett.63.2480

J. Los, A. Fasolino, Physical Review B 68 (2003) 024107. DOI: https://doi.org/10.1103/PhysRevB.68.024107

J.H. Los, L.M. Ghiringhelli, E.J. Meijer, A. Fasolino, Physical Review

B 72 (2005) 214102.

K. Zakharchenko, M. Katsnelson, A. Fasolino, Physical review letters 102 (2009) 046808. DOI: https://doi.org/10.1103/PhysRevLett.102.046808

S. Plimpton, Journal of computational physics 117 (1995) 1. DOI: https://doi.org/10.1006/jcph.1995.1039

S.L. Roux, J. Appl. Cryst 43 (2010) 181. DOI: https://doi.org/10.1107/S0021889809051929

W. Humphrey, A. Dalke, K. Schulten, J. Mol, Graphics 14 (1996) 33. DOI: https://doi.org/10.1016/0263-7855(96)00018-5

B.I. Halperin, D.R. Nelson, Physical Review Letters 41 (1978) 121. DOI: https://doi.org/10.1103/PhysRevLett.41.121

J.M. Kosterlitz, D.J. Thouless, Journal of Physics C: Solid State Physics 6 (1973) 1181. DOI: https://doi.org/10.1088/0022-3719/6/7/010

A.P. Young, Physical Review B 19 (1979) 1855. DOI: https://doi.org/10.1103/PhysRevB.19.1855

F. Banhart , J. Kotakoski, A.V. Krasheninnikov, ACS Nano 5 (2011) 26. DOI: https://doi.org/10.1021/nn102598m

Downloads

Published

17-02-2017

How to Cite

[1]
N. T. T. Hang, Dependence of Melting Process on Size and Edge Type of Graphene Nanoribbon, Comm. Phys. 26 (2017) 381. DOI: https://doi.org/10.15625/0868-3166/26/4/8805.

Issue

Section

Papers
Received 23-10-2016
Published 17-02-2017