Imagen de portada

Monitoring and diagnosis of historical masonry buildings and future perspective = Monitoreo y diagnóstico de edificios históricos de mampostería y perspectiva futura

Adolfo Preciado, Fabiola Colmenero


DOI: https://doi.org/10.20868/bma.2020.1.4666

Texto completo:

PDF

Resumen


Abstract

Historical buildings still existing in different parts of the world were constructed with unreinforced masonry and have an acceptable capacity to transmit vertical loading, but they are very vulnerable against horizontal loading induced by earthquakes. In order to protect these buildings belonging to the patrimony of the humanity from this hazard, we need to understand the construction materials, structural elements and loading transmission mechanism. Moreover, to rehabilitate or retrofit them, it is necessary to develop an understanding process of the structure though monitoring and in-situ/laboratory experimental tests to stablish a diagnosis. The structural monitoring campaigns are helpful to investigate the mechanical and dynamic properties of the building. The use of installed thermal cameras and micro-sensors at strategic parts of the historical buildings represent a very interesting and non-destructive option to measure different parameters constantly and for long periods of time. The present paper aims at briefly describing the different involved processes in the monitoring and structural diagnosis of historical buildings which is fundamental in order to preserve them against the effects of earthquakes by means of rehabilitation works and strengthening. Moreover, it is presented a future perspective about non-destructive and non-invasive experimental tests and diagnosis with the use of new technologies.

Resumen

Los edificios históricos que aún existen en diferentes partes del mundo fueron construidos con mampostería no reforzada y tienen capacidad aceptable para transmitir cargas verticales, pero son muy vulnerables ante cargas laterales inducidas por sismos. Para proteger de esta amenaza a estas edificaciones que forman parte del patrimonio de la humanidad, debemos de entender los materiales constructivos, elementos estructurales y su mecanismo de transmisión de cargas. Para decidir entre rehabilitar o reforzar, se debe de realizar un proceso de entendimiento de la estructura a través de un monitoreo y pruebas experimentales en sitio y en laboratorio que permitan generar un diagnóstico. Los monitoreos estructurales sirven para investigar sus propiedades mecánicas y dinámicas. El uso de cámaras térmicas y micro-sensores en puntos estratégicos de los edificios históricos representan una opción muy interesante y no destructiva para medir diferentes parámetros de forma constante y por largos periodos de tiempo. El presente artículo tiene como objetivo describir de forma puntual los diferentes procesos involucrados en el monitoreo y diagnóstico estructural de edificios históricos que resulta fundamental para poder conservarlos ante los efectos de los sismos por medio de trabajos de rehabilitación y refuerzo. Además, se presenta una perspectiva futura sobre pruebas experimentales y diagnósticos no destructivos ni invasivos con el uso de nuevas tecnologías.


Palabras clave


Unreinforced masonry; earthquakes; historical buildings; experimental tests; diagnosis; preservation assessment; Mampostería no reforzada; sismos; edificios históricos; pruebas experimentales; diagnóstico; conservación

Referencias


A. Preciado (2011). “Seismic vulnerability reduction of historical masonry tow-ers by external prestressing devices.” Doctoral thesis, Technical University of Braunschweig, Germany and University of Florence, Italy.

A. Preciado, G. Bartoli and A. Ramirez-Gaytan (2017a). “Earthquake Protection of the Torre Grossa Medieval Tower of San Gimignano, Italy by Vertical External Prestressing.” Engineering Failure Analysis, Vol. 71, pp. 31-42.

P. Foraboschi (2016). “The central role played by structural design in enabling the construction of buildings that advanced and revolutionized architecture.” Cons-truction and Building Materials, Vol. 114, pp. 956-976.

R. Meli (1998). “Ingeniería estructural de los edificios históricos.” Fundación ICA. A. C., Mexico.

A. Preciado (2015). “Seismic vulnerability and failure modes simulation of an-cient masonry towers by validated virtual finite element models.” Engineering Failure Analysis, Vol. 57, pp. 72-87.

A. Preciado (2018). “Analysis of Behavior and Failure Mechanisms of Old Unrein-forced Masonry Constructions Under Strong Earthquakes.” Volume 1, Chapter 1 (pp. 1-25). Masonry: Design, Materials and Techniques, Nova Science Publishers, Inc.

A. Preciado and S.T. Sperbeck (2019). “Failure analysis and performance of compact and slender carved stone walls under compression and seismic loading by the FEM approach.” Engineering Failure Analysis, Vol 96, pp. 508-524.

G. Bartoli, C., Casamaggi, and P. Spinelli (2000). “Numerical modelling and analysis of monumental buildings: A case study.” Department of Civil Engineering, University of Florence, Italy.

G. Bartoli, M., Betti, P. Spinelli and B. Tordini (2006). “An innovative procedure for assessing the seismic capacity of historical tall buildings: The Torre Grossa masonry tower.” Proceedings of the 5th International Conference on Structural Analysis of Historical Constructions (SAHC), New Delhi, India.

M.E. Stavroulaki, G. Bartoli, M. Betti and G.E. Stavrolakis (2009). “Strengthening of masonry using metal reinforcement: A parametric numerical investigation.” Proceedings of the International Conference on Protection of Historical Buildings (PROHITECH), June 21-24, Rome, Italy.

G. Bartoli, C. Blasi, N. De Robertis and P. Foraboschi (1991). “Monitoring system of Brunelleschi’s Dome in Florence, interpretations of the recorded data”. Proceedings of the 2nd International Conference on Structural Repair and Maintenance of Historical Buildings, Seville, Spain, Vol. 14–16, pp. 209–221.

BGS (2009). British Geological Survey, Centre for Sustainable Mineral Develop-ment. Building Stones. https://www.bgs.ac.uk/mineralsuk/buildingStones/background.html. Último acceso el 16 de junio de 2017.

J. Tejeda y C. Silva (2002). “Estudio de resistencias a compresión diagonal (cortante), de muretes de mampostería fabricados con materiales de la zona conur-bada Colima-Villa de Álvarez.” Memorias del XIII Congreso Nacional de Ingeniería Estructural, SMIE, Puebla, México.

G. Bartoli, M., Betti, M. Orlando and P. Spinelli (2008). “In situ testing and structural assessment of an historic masonry dome.” Proceedings of the 12th International Conference on Structural Faults and Repair, Edinburgh, Scotland.

A. Carpinteri, S. Invernizzi and G. Lacidogna (2009). “Historical brick-masonry subjected to double flat-jack test: Acoustic emissions and scale effects on cracking density.” Construction and Building Materials, Vol. 23, pp. 2813-2820.

S. Parivallal, K. Kesavan, K. Ravisankar, B. Arun-Sundram and A.K. Farvaze-Ahmed (2011). “Evaluation of in-situ stress in masonry structures by flat jack tech-nique.” Proceedings of the National Seminar & Exhibition on Non-Destructive Evalu-ation (NDE), India.

D.S.P. Rao (2007). “Investigations on ancient masonry structures using infrared thermography.” Proceedings of the Conference of InfraMation, USA.

S. Ivorra and F.J. Pallares (2006). “Dynamic investigations on a masonry bell tower.” Engineering structures, Vol. 28, pp. 660-667.

C. Gentile and A. Saisi (2007). “Ambient vibration testing of historic masonry towers for structural identification and damage assessment.” Construction and Building Materials, Vol. 21, pp. 1311-1321.

A. Preciado, H. Budelmann and G. Bartoli (2016). “Earthquake protection of colonial bell towers in Colima, Mexico with externally prestressed FRPs.” Interna-tional Journal of Architectural Heritage, Vol.10(4), pp. 499-515.

UCOL (1997). “The macro-earthquake of Manzanillo occurred on October 9th, 1995 (in Spanish).” University of Colima (UCOL), Government of the state of Colima and the Mexican Society of Seismic Engineering.

V.M. Zobin (2004). “The earthquakes and their hazards: How to survive to them? (in Spanish).” University of Colima, Mexico.

H. Rodriguez-Lozoya, L. Quintanar, C. Rebollar, J. Gomez, Y. Yagi, T. Domin-guez, G. Reyes, C. Javier and L. Alcantara (2007). “Source characteristics of the 22nd January 2003 Mw 7.5 Tecoman, Mexico, earthquake and its rupture process.” Journal of Geophysical Research.

M. Chavez, S. Garcia, E. Cabrera, M. Ashworth, N. Perea, A. Salazar, E. Chavez, J. Saborio-Ulloa and J. Saborio-Ortega (2014). “Site Effects and Peak Ground Accel-erations Observed in Guadalajara, Mexico, for the 9 October 1995 Mw 8 Colima–Jalisco, Earthquake.” Bulletin of the Seismological Society of America, 104, 1–26.

A. Preciado, A. Ramirez-Gaytan, S. Lazcano, I. Preciado, N. Gutiérrez y J.C. Santos (2017b). “Vulnerabilidad de edificios ante resonancia sísmica en Guadalaja-

ra y Zapopan por el sismo del 11 de mayo de 2016 Mw=4.9.” Memorias del XXI Congreso Nacional de Ingeniería Sísmica (SMIS), Septiembre 20-23, Guadalajara, México.

R. Cherif and N. Atalla (2015). “Experimental investigation of the accuracy of a vibroacoustic model for sandwich composite panels”. The Journal of the Acoustical Society of America, Vol. 137(3), pp. 1541-1550.

A. Santoni, P. Fausti and P. Bonfiglio (2018). “Experimental setup for acoustic and mechanical characterisation of lightweight building elements.” Proceedings of the Euronoise 2018, the 11th European Congress and Exposition on Noise Control Engineering, May 27-31, Crete, Greece.

B. Glisic, D. Inaudi, D. Posenato, A. Figini and N. Casanova (2007). “Monitoring of heritage structures and historical monuments using long-gage fiber optic inter-ferometric sensors: an overview.” Proceedings of the 3rd International Conference on Structural Health Monitoring of Intelligent Infrastructure. November 13-16, Vancouver, British Columbia, Canada.

M. De Fino and G. De Tommasi (2008). “Structural health monitoring of histori-cal buildings using fibre optic sensors.” Proceedings of the 11DBMC International Conference on Durability of Building Materials and Components, May 11-14, Istan-bul, Turkey.

X.W. Ye, Y.H. Su and J.P. Han (2014). “Structural health monitoring of civil infrastructure using optical fiber sensing technology: A comprehensive review.” Scientific World Journal: 652329, doi: 10.1155/2014/652329.


Enlaces refback

  • No hay ningún enlace refback.


Copyright (c) 2021 Autor / BY-NC-ND

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.