Pertumbuhan dan Produksi Genotipe Kedelai (Glycine max L. Merrill) dengan Aplikasi Jenis Mikoriza di Lahan Kering

Authors

DOI:

https://doi.org/10.31850/jgt.v10i2.784

Keywords:

mycorrhizae, adaptation, genotype, dry land

Abstract

One of the efforts to increase the production of soybean plants in a dry land, which is environmentally friendly with mycorrhizal inoculation, will help absorb water tightly bound to soil micropores and absorb plant nutrients. This research aimed to study the effect of MVA application on increasing the growth and production of soybean genotypes on dry land, determining the type of mycorrhizae that is most compatible with soybean genotypes on dry land, is there an interaction between soybean genotypes and mycorrhizal types so that it is adaptive on dry land. Use Divided plot design (RPT), as follows: Main plot (PU) consists of 6 genotypes of the 4th generation (g) viz : g1 (gM50Gy); g2 (gO50Gy); g3 (gT50Gy); g4 (gM); g5 (gO); g6 (gT). Subplot (AP) is kind mycorrhizae (M), namely control (without mycorrhizae (m0), Glomus etunicatum (m1), Gigaspora margarita, (m2), mixedGlomus etunicatum and the Gigaspora margarita (m3). Each treatment on the main plot and subplots were combined so that there were 24 treatment combinations. The results showed that the soybean genotype was g1 (gM50Gy); g2 (gO50Gy); g3 (gT50Gy) are well adapted to dry land, which is indicated by stomata length and width, higher canopy and root dry weight, and with lower Al uptake. A mycorrhizal application mix Glomus etunicatum and Gigaspora margarita showed the best results on observing length and number of stomata, shoot and root dry weight, root Al uptake, number of filled pods, and seed weight per plot. Treatment (gT50Gy) with mycorrhizal applications mix Glomus etunicatum, and Gigaspora margarita gave the best results on the number of stomata, phosphorus uptake.

Author Biographies

Bibiana Rini Widiati, Muslim Maros University

Agrotecnologi department

Muh. Izzdin Idrus, Universitas Muslim Maros

Program Studi Agroteknologi, Fakultas Pertanian, Peternakan, dan Kehutanan

A. Adriani Wahditiya, Universitas Muslim Maros

Program Studi Agroteknologi, Fakultas Pertanian, Peternakan, dan Kehutanan

References

Aparicio I. M., Cuenca, A. ., Villanueva-Suárez, M. J., & Zapata-Revilla, M. A. (2008).

Soybean, a promising health source. Nutricion Hospitalaria, 23(4), 305–312.

Ba´rzana G, Ricardo Aroca1, Jose´ Antonio Paz, Franc¸ois Chaumont, M. C. M.-B., & Ruiz-Lozano, M. C. and J. M. (2012). Arbuscular mycorrhizal symbiosis increases relative apoplastic water flow in roots of the host plant under both well-watered and drought stress conditions. 1009–1017. https://doi.org/10.1093/aob/mcs007

Beltrano, J., & Ronco, M. G. (2008). Improved tolerance of wheat plants (Triticum aestivum L.) to drought stress and rewatering by the arbuscular mycorrhizal fungus Glomus claroideum: Effect on growth and cell membrane stability. Brazilian Journal of Plant Physiology, 20(1), 29–37. https://doi.org/10.1590/S1677-04202008000100004

Blum, A. (2005). Drought resistance, water-use efficiency, and yield potential - Are they compatible, dissonant, or mutually exclusive? Australian Journal of Agricultural Research, 56(11), 1159–1168. https://doi.org/10.1071/AR05069

BPT. (2009). Analisis Kimia Tanah, Tanaman, Air, dan Pupuk (ke 2). Balai Penelitian Tanah, Badan Penelitian dan Pengembangan Pertanian Departemen Pertanian Bogor.

Brundrett, M. C. (2002). Coevolution of roots and mycorrhizas of land plants. New Phytologist, 154(2), 275–304. https://doi.org/10.1046/j.1469-8137.2002.00397.x

Chen, L. S., Qi, Y. P., Smith, B. R., & Liu, X. H. (2005). Aluminum-induced decrease in CO2 assimilation in citrus seedlings is unaccompanied by decreased activities of key enzymes involved in CO2 assimilation. Tree Physiology, 25(3), 317–324. https://doi.org/10.1093/treephys/25.3.317

Cumming, J. R., & Ning, J. (2003). Arbuscular mycorrhizal fungi enhance aluminium resistance of broomsedge (Andropogon virginicus L.). Journal of Experimental Botany, 54(386), 1447–1459. https://doi.org/10.1093/jxb/erg149

Dakora, F. D., & Phillips, D. A. (2002). Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant and Soil 245: 35–47, 2002., 245, 35–47.

Dariah A. dan Heryani N. (2014). Pemberdayaan Lahan Kering Suboptimal untuk Mendukung Kebijakan Diversifikasi dan Ketahanan Pangan. Jurnal Sumberdaya Lahan Edisi Khusus, Desember 2014; 1-16, Edisi Khus, 1–16.

Diagne, N., Ngom, M., Djighaly, P. I., Fall, D., Hocher, V., & Svistoonoff, S. (2020). Roles of Arbuscular Mycorrhizal Fungi on Plant Growth and Performance: Importance in Biotic and Abiotic Stressed Regulation. Diversity, 12(10), 370. https://doi.org/10.3390/d12100370

Giovannetti. M., and M. B. (1980). An Evaluation of Techniques For Measuring Vesikular Arbuscular Mycorrhizal Infection in Roots. The New Phytologist, 1980, (84), 489–500. Retrieved from https://nph.onlinelibrary.wiley.com/doi/abs/10.111

Gomez, K. A., Gomez, A. A., Baharsjah, J. S., & Nasution, H. (1995). Prosedur statistik untuk penelitian pertanian. 1995.

Jansa, J., Smith, F. A., & Smith, S. E. (2008). Are there benefits of simultaneous root colonization by different arbuscular mycorrhizal fungi? New Phytologist, 177(3), 779–789. https://doi.org/10.1111/j.1469-8137.2007.02294.x

Jiang, H., Chen, L., Zheng, J., Han, S., & Smith, B. R. (2008). Aluminum-induced effects on Photosystem II photochemistry in Citrus leaves assessed by the chlorophyll a fluorescence transient. 1863–1871.

Kertész, S., Fábián, A., Zsoldos, F., Vashegyi, Á., Labádi, I., & Bona, L. (2002). Changes in glutamine synthetase activity in presence of aluminium complexes. Proceedings of the 7th Hungarian Congress on Plant Physiology, 2002, 46(mM), 103–104.

Khan Abdullah G. (2005). Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. Journal of Trace Elements in Medicine and Biology 18 (2005) 355–364, 18, 355–364. https://doi.org/10.1016/j.jtemb.2005.02.006

Kormanik, P. P., Bryan, W. C., & Schultz, R. C. (1980). Procedures and equipment for staining large numbers of plant root samples for endomycorrrhizal assay. Canadian Journal of Microbiology, 26(4), 536–538. https://doi.org/10.1139/m80-090

Lux, H. B., & Cumming, J. R. (2001). Mycorrhizae confer aluminum resistance to tulip- poplar seedlings. 702, 694–702. https://doi.org/10.1139/cjfr-31-4-694

M. Bänziger, G.O. Edmeades, D. Beck, and M. B. (2000). From Theory to Practice Breeding for Drought and Nitrogen Stress Tolerance in Maize Breeding for Drought and Nitrogen Stress Tolerance in Maize From Theory to Practice. In ISBN: 970-648-46-3 AGROVOC descriptors.

Marulanda, A., Azcón, R., & Ruiz-Lozano, J. M. (2003). Contribution of six arbuscular mycorrhizal fungal isolates to water uptake by Lactuca sativa plants under drought stress. Physiologia Plantarum, 119(4), 526–533. https://doi.org/10.1046/j.1399-3054.2003.00196.x

Meghvansi, M. K., Prasad, K., Harwani, D., & Mahna, S. K. (2008). Response of soybean cultivars toward inoculation with three arbuscular mycorrhizal fungi and Bradyrhizobium japonicum in the alluvial soil. European Journal of Soil Biology, 44(3), 316–323. https://doi.org/10.1016/j.ejsobi.2008.03.003

Michałojć, Z., Jarosz, Z., Pitura, K., & Dzida, K. (2015). Effect of mycorrhizal colonization and nutrient solutions concentration on the yielding and chemical composition of tomato grown in rockwool and straw medium. Acta Scientiarum Polonorum, Hortorum Cultus, 14(6), 15–27.

Monther, M. T., & Kamaruzaman, S. (2012). Arbuscular mycorrhizal fungi and plant root exudates bio-communications in the rhizosphere. African Journal of Microbiology Research, 6(46), 7295–7301. https://doi.org/10.5897/ajmr12.2250

Ojo, G. O. S., & Ayuba, S. A. (2012). Screening of tropically adapted genotypes of soybean (Glycine max (L.) Merrill) for aluminium stress tolerance in short-term hydroponics. Journal of Animal & Plant Sciences, 14(2), 1921–1930. Retrieved from http://www.m.elewa.org/JAPS;

Postma, J. W. M., Olsson, P. A., & Falkengren-Grerup, U. (2007). Root colonisation by arbuscular mycorrhizal, fine endophytic and dark septate fungi across a pH gradient in acid beech forests. Soil Biology and Biochemistry, 39(2), 400–408. https://doi.org/10.1016/j.soilbio.2006.08.007

Rapparini, and P. (2014). Chapter 2 Mycorrhizal Fungi to Alleviate Drought Stress on Plant Growth. Use of Microbes for the Alleviation of Soil Stresses, Volume 1, 1, 1–162. https://doi.org/10.1007/978-1-4614-9466-9

Ritung, S., Suryani, E., Subardja, D., Sukarman, Nugroho, K., Suparto, … Supriatna, W. (2015). Sumber Daya Lahan Pertanian Indonesia: Luas, Penyebaran, dan Potensi Ketersediaan.

Sasli, I. 2004. Peranan Mikoriza Vesikula Arbuskula (MVA) Dalam Penigkatan Resistensi Tanaman Terhadap Cekaman Kekeringan. Makalah Pribadi pengantar ke Falsafah Sains. Sekolah Pasca Sarjana, IPB.

Suherman, S., Rahim, I., & Akib, A. (2012). Aplikasi Mikoriza Vesikular Arbuskular Terhadap Pertumbuhan dan Produksi Tanaman Kedelai (Glycine max L. Merrill). Jurnal Galung Tropika, 1(1).

Taiz L and Zeiger. (2002). Plant Physiology, 3rd ed. In Publisher: Sinauer Associates; 3 edition (Aug 30 2002).

Thioub, M., Ewusi-mensah, N., Sarkodie-addo, J., & Adjei-gyapong, T. (2019). Soil & Tillage Research Arbuscular mycorrhizal fungi inoculation enhances phosphorus use efficiency and soybean productivity on a Haplic Acrisol. 192(October 2018), 174–186. https://doi.org/10.1016/j.still.2019.05.001

Prodi Agroteknologi Universitas Tidar. (2014). Petunjuk Praktikum Agroekologi. https://faperta.untidar.ac.id/berita/beasiswa-dan-prestasi/pedoman-praktikum-semester-gasal/

Wang, Y., Tang, S., & Jin, H. (2015). Effect of glucose, root exudates and N forms in mycorrhizal symbiosis using Rhizophagus intraradices. Journal of Soil Science and Plant Nutrition, 15(3), 726–736. https://doi.org/10.4067/S0718-95162015005000049

Wathira N.L. Peter W. Sheila O. (2016). Enhancement of Colonisation of Soybean Roots by Arbuscular Mycorrhizal Fungi Using Vermicompost and Biochar. Agriculture, Forestry and Fisheries, 5(3), 71. https://doi.org/10.11648/j.aff.20160503.17

Wu, Y., & Cosgrove, D. J. (2000). Adaptation of roots to low water potentials by changes in cell wall extensibility and cell wall proteins. Journal of Experimental Botany, 51(350), 1543–1553. https://doi.org/10.1093/jexbot/51.350.1543

Xu, Z., & Zhou, G. (2008). Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. Journal of Experimental Botany, 59(12), 3317–3325. https://doi.org/10.1093/jxb/ern185

Zhang, X., Liu, P., Yang, Y. S., & Xu, G. (2007). Effect of Al in soil on photosynthesis and related morphological and physiological characteristics of two soybean genotypes. 435–444.

Published

30-08-2021

Issue

Section

Articles