Potensi Tanaman Herbal Antidiabetes untuk Minuman Obat: Sebuah Literatur Review

Yulin Prisdiany, Irma M. Puspitasari, Norisca A. Putriana, Mas Rizky A. A. Syamsunarno

Abstract


Jumlah kasus dan prevalensi diabetes terus meningkat selama beberapa dekade terakhir. Pada tahun 2012, diabetes menyebabkan 1,5 juta kematian. Seiring berkembangnya pengetahuan, saat ini tanaman herbal lebih banyak digunakan sebagai bahan obat. Salah satu sediaan yang saat ini sedang banyak dikembangkan adalah sediaan minuman herbal. Minuman herbal kaya akan senyawa bioaktif alami. Bukti ilmiah menunjukkan bahwa senyawa bioaktif ini memberikan banyak efek biologis, seperti antioksidan, antibakteri, antidiabetes, dan lain-lain. Salah satu permasalahan yang berkaitan dengan penggunaan tanaman herbal adalah kurangnya penelitian atau pengujian secara ilmiah yang menunjukkan khasiat dari tanaman obat yang digunakan. Artikel ini memberikan gambaran secara ilmiah tentang tanaman herbal yang sudah terbukti memiliki khasiat antidiabetes yang dapat dimanfaatkan untuk pengembangan minuman obat herbal. Pencarian literatur melalui basis data elektronik PubMed pada bulan April 2020 dengan kata kunci “herbal tea” dan “antidiabetic” memperoleh total 30 artikel yang dapat ditelaah lebih lanjut. Sebanyak 12 artikel tentang uji in vitro, 16 artikel tentang uji in vivo, dan 2 artikel tentang uji klinik. Terdapat 35 jenis tanaman herbal di seluruh dunia yang terbukti dapat memberikan aktivitas antidiabetes. Bagian morfologi tanaman yang paling sering digunakan yaitu bagian daun. Mekanisme in vitro dari tanaman herbal dalam memberikan aktivitas antidiabetes adalah dengan menghambat aktivitas enzim α-Amylase dan α-Glucosidase. Pada uji in vivo dan uji klinik, semua tanaman herbal yang digunakan pada penelitian mempunyai aktivitas dalam membantu menurunkan kadar glukosa darah dan dapat dimanfaatkan sebagai minuman obat herbal.

Kata kunci: Antidiabetes, minuman herbal, tanaman herbal

 

The Potential of Antidiabetic Herbal Plants for Medicinal Drinks: A Literature Review

Abstract

Over the past few decades, an increase has occurred in the occurrence and prevalence of diabetes, with 1.5 million deaths recorded in 2012 alone. Currently, more herbal plants are being used as medicines including medicinal drinks, and these are rich in natural bioactive compounds. According to scientific evidence, these bioactive compounds provide many biological effects, for instance, antioxidant, antibacterial, and antidiabetic activities. However, one problem related to the use of herbal medicine is the inadequate research or scientific evidence of the plants’ efficacy. This article, therefore, provides a scientific description of medicinal plants proven to exhibit antidiabetic properties and suitable for developing medicinal drinks. A literature search conducted across the PubMed electronic database in April 2020, using the keywords “herbal tea” and “antidiabetic” obtained a total of 30 articles, and of these publications, 12 were in vitro studies, 16 were pre-clinical studies, while 2 clinical trials. Across the world, 35 types of herbal plants have been proven to exhibit antidiabetic activity, with the leaves being the most commonly used part. The in vitro mechanism of herbal plants in exhibiting this antidiabetic activity is through inhibition of α-Amylase and α-Glucosidase enzyme activity. In addition, pre-clinical and clinical trials showed each plant in this study was able to reduce blood glucose levels and were suitable for developing medicinal drinks.

Keywords: Antidiabetic, herbal plants, medicinal drinks


Keywords


Antidiabetes, minuman herbal, tanaman herbal

References


World Health Organization. Global report on diabetes. Geneva: World Health Organization: WHO Press.

International Diabetes Federation. IDF diabetes atlas, 6th Edition. Brussels, Belgium: International Diabetes Federation; 2013.

de Lima ME, Colpo AZC, Rosa H, Salgueiro ACF, da Silva MP, Noronha DS, et al. Ilex paraguariensis extracts reduce blood glucose, peripheral neuropathy and oxidative damage in male mice exposed to streptozotocin. J Funct Foods. 2018;44(May):9–16. doi: 10.1016/j.jff.2018.02.024

Amarowicz R, Shahidi F. Antioxidant activity of broad bean seed extract and its phenolic composition. J Funct Foods. 2017;38(November):656–62. doi: 10.1016/j.jff.2017.04.002

Granato D, Shahidi F, Wrolstad R, Kilmartin P, Melton LD, Hidalgo FJ, et al. Antioxidant activity, total phenolics and flavonoids contents: Should we ban in vitro screening methods?. Food Chem. 2018;264:471–5. doi: 10.1016/j.foodchem.2018.04.01

Chandrasekara A, Shahidi F. Herbal beverages: Bioactive compounds and their role in disease risk reduction. J Tradit Complement Med. 2018;8(4):451–8. doi: 10.1016/j.jtcme.2017.08.006

Perera PRD, Ekanayake S, Ranaweera KKDS. Antidiabetic compounds in Syzygium cumini decoction and ready to serve herbal drink. Evid Based Complement Altern Med. 2017;2017:1083589. doi: 10.1155/2017/1083589

Munadi E, Salim Z. Info komoditi obat. Jakarta: Badan Pengkajian dan Pengembangan Perdagangan Kementerian Perdagangan Republik Indonesia; 2017.

Tunev SS, Hastey CJ, Hodzic E, Feng S, Barthold SW, Baumgarth N. Lymphoadenopathy during lyme borreliosis is caused by spirochete migration-induced specific B cell activation. PLoS Pathog. 2011;7(5):1–14. doi: 10.1371/journal.ppat.1002066

Eruygur N, Dural E. Determination of 1-Deoxynojirimycin by a developed and validated HPLC-FLD method and assessment of in-vitro antioxidant, α-Amylase and α-Glucosidase inhibitory activity in mulberry varieties from Turkey. Phytomedicine. 2019;53(February): 234–42. doi: 10.1016/j.phymed.2018.09.016

Meng Y, Ding L, Wang Y, Nie Q ting, Xing Y yang, Ren Q. Phytochemical identification of Lithocarpus polystachyus extracts by ultra-high-performance liquid chromatography–quadrupole time-of-flight–MS and their protein tyrosine phosphatase 1B and α-glucosidase activities. Biomed Chromatogr. 2020;34(1):e4705. doi: 10.1002/bmc.4705

Gremski LA, Coelho ALK, Santos JS, Daguer H, Molognoni L, do Prado-Silva L, et al. Antioxidants-rich ice cream containing herbal extracts and fructooligosaccharides: Manufacture, functional and sensory properties. Food Chem. 2019;298:125098. doi: 10.1016/j.foodchem.2019.125098

Villa-Rodriguez JA, Aydin E, Gauer JS, Pyner A, Williamson G, Kerimi A. Green and chamomile teas, but not acarbose, attenuate glucose and fructose transport via inhibition of GLUT2 and GLUT5. Mol Nutr Food Res. 2017;61(12):1–47. doi: 10.1002/mnfr.201700566

Ma YY, Zhao DG, Zhou AY, Zhang Y, Du Z, Zhang K. α-Glucosidase inhibition and antihyperglycemic activity of phenolics from the flowers of edgeworthia gardneri. J Agric Food Chem. 2015;63(37):8162–9. doi: 10.1021/acs.jafc.5b03081

Oboh G, Ogunruku OO, Ogidiolu FO, Ademiluyi AO, Adedayo BC, Ademosun AO. Interaction of some commercial teas with some carbohydrate metabolizing enzymes linked with type-2 diabetes: A dietary intervention in the prevention of type-2 diabetes. Adv Prev Med. 2014;2014:534082. doi: 10.1155/2014/534082

Dalar A, Türker M, Zabaras D, Konczak I. Phenolic composition, antioxidant and enzyme inhibitory activities of Eryngium bornmuelleri leaf. Plant Foods Hum Nutr. 2014;69(1):30–6. doi: 10.1007/s11130-013-0393-6

Wang L, Luo Y, Wu Y, Liu Y, Wu Z. Fermentation and complex enzyme hydrolysis for improving the total soluble phenolic contents, flavonoid aglycones contents and bio-activities of guava leaves tea. Food Chemistry. 2018;264:189–98. doi: 10.1016/j.foodchem.2018.05.035

Pereira CG, Barreira L, Bijttebier S, Pieters L, Marques C, Santos TF, et al. Health promoting potential of herbal teas and tinctures from Artemisia campestris subsp. maritima: From traditional remedies to prospective products. Sci Rep. 2018;8(1):4689. doi: 10.1038/s41598-018-23038-6

Oliveira AP, Matos RP, Silva ST, Andrade PB, Ferreres F, Gil-Izquierdo A, et al. A new iced tea base herbal beverage with Spergularia rubra extract: Metabolic profile stability and in vitro enzyme inhibition. J Agric Food Chem. 2013;61(36):8650–6. doi: 10.1021/jf401884u

Chen YG, Li P, Li P, Yan R, Zhang XQ, Wang Y, et al. α-glucosidase inhibitory effect and simultaneous quantification of three major flavonoid glycosides in microctis folium. Molecules. 2013;8:4221–32. doi: 10.3390/molecules18044221

Nyirenda KK, Saka JDK, Naidoo D, Maharaj VJ, Muller CJF. Antidiabetic, anti-oxidant and antimicrobial activities of Fadogia ancylantha extracts from Malawi. J Ethnopharmacol. 2012;143(1):372–6. doi: 10.1016/j.jep.2012.07.002

Huang W, Percie du Sert N, Vollert J, Rice ASC. General principles of preclinical study design. In: Bespalov A, Michel MC. (eds) Good research practice in non-clinical pharmacology and biomedicine. Handbook of experimental pharmacology, vol 257. Philadelphia: Springer, Cham; 2019.

Luo Y, Peng B, Wei W, Tian X, Wu Z. Antioxidant and anti-diabetic activities of polysaccharides from guava leaves. Molecules. 2019;24(7):1343. doi: 10.3390/molecules24071343

Chen J, Wu Y, Zou J, Gao K. α-Glucosidase inhibition and antihyperglycemic activity of flavonoids from Ampelopsis grossedentata and the flavonoid derivatives. Bioorg Med Chem. 2016;24(7):1488–94. doi: 10.1016/j.bmc.2016.02.018

Welch C, Zhen J, Bassène E, Raskin I, Simon JE, Wu Q. Bioactive polyphenols in kinkéliba tea (Combretum micranthum) and their glucose-lowering activities. J Food Drug Anal. 2018;26(2):487–96.

Liu J, Li Y, Yang P, Wan J, Chang Q, Wang TTY, et al. Gypenosides Reduced the Risk of overweight and insulin resistance in C57BL/6J mice through modulating adipose thermogenesis and gut microbiota. J Agric Food Chem. 2017;65(42):9237–46. doi: 10.1021/acs.jafc.7b03382

Kamakura R, Son MJ, de Beer D, Joubert E, Miura Y, Yagasaki K. Antidiabetic effect of green rooibos (Aspalathus linearis) extract in cultured cells and type 2 diabetic model KK-Ay mice. Cytotechnology. 2015;67(4):699–710. doi: 10.1007/s10616-014-9816-y

Jung UJ, Park YB, Kim SR, Choi MS. Supplementation of persimmon leaf ameliorates hyperglycemia, dyslipidemia and hepatic fat accumulation in type 2 diabetic mice. PLoS One. 2012;7(11):e49030. doi: 10.1371/journal.pone.0049030

Jiang B, Lv Q, Wan W, Le L, Xu L, Hu K, et al. Transcriptome analysis reveals the mechanism of the effect of flower tea: Coreopsis tinctoria on hepatic insulin resistance. Food Funct. 2018;9(11):5607–20. doi: 10.1039/c8fo00965a

Lee JE, Kang SJ, Choi SH, Song CH, Lee YJ, Ku SK. Fermentation of green tea with 2% Aquilariae lignum increases the anti-diabetic activity of green tea aqueous extracts in the high fat-fed mouse. Nutrients. 2015;7(11):9046–78. doi: 10.3390/nu7115447

Khan SS, Najam R, Anser H, Riaz B, Alam N. Chamomile tea: Herbal hypoglycemic alternative for conventional medicine. Pak J Pharm Sci. 2014;27(5):1509-14.

Dludla P V., Muller CJF, Louw J, Joubert E, Salie R, Opoku AR, et al. The cardioprotective effect of an aqueous extract of fermented rooibos (Aspalathus linearis) on cultured cardiomyocytes derived from diabetic rats. Phytomedicine. 2014;21(5):595–601. doi: 10.1016/j.phymed.2013.10.029

Muller CJF, Joubert E, de Beer D, Sanderson M, Malherbe CJ, Fey SJ, et al. Acute assessment of an aspalathin-enriched green rooibos (Aspalathus linearis) extract with hypoglycemic potential. Phytomedicine. 2012;20(1):32–9. doi: 10.1016/j.phymed.2012.09.010

Wang Q, Jiang C, Fang S, Wang J, Ji Y, Shang X, et al. Antihyperglycemic, antihyperlipidemic and antioxidant effects of ethanol and aqueous extracts of Cyclocarya paliurus leaves in type 2 diabetic rats. J Ethnopharmacol. 2013;150(3):1119–27. doi: 10.1016/j.jep.2013.10.040

Wainstein J, Ganz T, Boaz M, Bar Dayan Y, Dolev E, Kerem Z, et al. Olive leaf extract as a hypoglycemic agent in both human diabetic subjects and in rats. J Med Food. 2012;15(7):605–10. doi: 10.1089/jmf.2011.0243

Naowaboot J, Pannangpetch P, Kukongviriyapan V, Prawan A, Kukongviriyapan U, Itharat A. Mulberry leaf extract stimulates glucose uptake and GLUT4 translocation in rat adipocytes. Am J Chin Med. 2012;40(1):163–75. doi: 10.1142/S0192415X12500139

Azevedo MF, Lima CF, Fernandes-Ferreira M, Almeida MJ, Wilson JM, Pereira-Wilson C. Rosmarinic acid, major phenolic constituent of Greek sage herbal tea, modulates rat intestinal SGLT1 levels with effects on blood glucose. Mol Nutr Food Res. 2011;55(1):15–25. doi: 10.1002/mnfr.201000472

European Parliament and Council of the European Union. Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes. Official J European Union; 2013.

Stewart AM, Cachat J, Green J, Gaikwad S, Kyzar E, Roth A, et al. Constructing the habituome for phenotype-driven zebrafish research. Behav Brain Res. 2013; 236(1):110–7. doi: 10.1016/j.bbr.2012.08.026

Velki M, Meyer-Alert H, Seiler TB, Hollert H. Enzymatic activity and gene expression changes in zebrafish embryos and larvae exposed to pesticides diazinon and diuron. Aquat Toxicol. 2017;193:187–200. doi: 10.1016/j.aquatox.2017.10.019

Ko JH, Rodriguez I, Joo SW, Kim HG, Lee YG, Kang TH, et al. Synergistic effect of two major components of Malva verticillata in the recovery of alloxan-damaged pancreatic islet cells in zebrafish. J Med Food. 2019;22(2):196–201.

Mayasari NR, Susetyowati, Wahyuningsih MSH, Probosuseno. Antidiabetic effect of rosella-stevia tea on prediabetic women in Yogyakarta, Indonesia. J Am Coll Nutr. 2018;37(5):373–9. doi: 10.1080/07315724.2017.1400927

Bernardo MA, Silva ML, Santos E, Moncada MM, Brito J, Proença L, et al. Effect of cinnamon tea on postprandial glucose concentration. J Diabetes Res. 2015;2015:913651. doi: 10.1155/2015/913651



Digital Object Identifier

DOI : https://doi.org/10.15416/ijcp.2021.10.2.144


Dimension Citation Metrics Badge

Refbacks

  • There are currently no refbacks.


 Indonesian Journal of Clinical Pharmacy is indexed by

        

  Creative Commons License

IJCP by Universitas Padjadjaran is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License

 

View My Stats