Home  /  Cells  /  Vol: 8 Núm: 1 Par: January (2019)  /  Article
ARTICLE
TITLE

Metformin Impairs Glutamine Metabolism and Autophagy in Tumour Cells

SUMMARY

Metformin has been shown to inhibit glutaminase (GLS) activity and ammonia accumulation thereby reducing the risk of hepatic encephalopathy in type 2 diabetic patients. Since tumour cells are addicted to glutamine and often show an overexpression of glutaminase, we hypothesize that the antitumoral mechanism of metformin could be ascribed to inhibition of GLS and reduction of ammonia and ammonia-induced autophagy. Our results show that, in different tumour cell lines, micromolar doses of metformin prevent cell growth by reducing glutamate, ammonia accumulation, autophagy markers such as MAP1LC3B-II and GABARAP as well as degradation of long-lived proteins. Reduced autophagy is then accompanied by increased BECN1/BCL2 binding and apoptotic cell death. Interestingly, GLS-silenced cells reproduce the effect of metformin treatment showing reduced MAP1LC3B-II and GABARAP as well as ammonia accumulation. Since metformin is used as adjuvant drug to increase the efficacy of cisplatin-based neoadjuvant chemotherapy, we co-treated tumour cells with micromolar doses of metformin in the presence of cisplatin observing a marked reduction of MAP1LC3B-II and an increase of caspase 3 cleavage. In conclusion, our work demonstrates that the anti-tumoral action of metformin is due to the inhibition of glutaminase and autophagy and could be used to improve the efficacy of chemotherapy.

 Articles related

Rui Zhong, Rui Xin, Zongyan Chen, Nan Liang, Yang Liu, Shumei Ma and Xiaodong Liu    

Deoxycytidine kinase (dCK) is a key enzyme in deoxyribonucleoside salvage and the anti-tumor activity for many nucleoside analogs. dCK is activated in response to ionizing radiation (IR)-induced DNA damage and it is phosphorylated on Serine 74 by the Ata... see more


Dar-Shong Lin, Yu-Wen Huang, Che-Sheng Ho, Pi-Lien Hung, Mei-Hsin Hsu, Tuan-Jen Wang, Tsu-Yen Wu, Tsung-Han Lee, Zo-Darr Huang, Po-Chun Chang and Ming-Fu Chiang    

Dysfunction of mitochondria causes defects in oxidative phosphorylation system (OXPHOS) and increased production of reactive oxygen species (ROS) triggering the activation of the cell death pathway that underlies the pathogenesis of aging and various dis... see more

Revista: Cells

Shule Hou, Jiarui Chen, Jun Yang    

The Kölliker’s organ is a transient epithelial structure during cochlea development that gradually degenerates and disappears at postnatal 12-14 days (P12-14). While apoptosis has been shown to play an essential role in the degeneration of the Kölliker’s... see more


M.L. Escobar, O.M. Echeverría, G. García, R. Ortíz, G.H. Vázquez-Nin    

Atresia is the process through which non-selectable oocytes are eliminated; it involves apoptosis and/or autophagy. This study used immunohistochemical and ultrastructural techniques to characterize the lamellae present in the cytoplasm of oocytes in fol... see more


Kailiang Zhou, Charles A. Sansur, Huazi Xu and Xiaofeng Jia    

Previous studies have indicated that autophagy plays a critical role in spinal cord injury (SCI), including traumatic spinal cord injury (TSCI) and ischemia-reperfusion spinal cord injury (IRSCI). However, while the understanding of mechanisms underlying... see more