Home  /  Entropy  /  Vol: 19 Núm: 10 Par: October (2017)  /  Article
ARTICLE
TITLE

Biological Aging and Life Span Based on Entropy Stress via Organ and Mitochondrial Metabolic Loading

SUMMARY

The energy for sustaining life is released through the oxidation of glucose, fats, and proteins. A part of the energy released within each cell is stored as chemical energy of Adenosine Tri-Phosphate molecules, which is essential for performing life-sustaining functions, while the remainder is released as heat in order to maintain isothermal state of the body. Earlier literature introduced the availability concepts from thermodynamics, related the specific irreversibility and entropy generation rates to metabolic efficiency and energy release rate of organ k, computed whole body specific entropy generation rate of whole body at any given age as a sum of entropy generation within four vital organs Brain, Heart, Kidney, Liver (BHKL) with 5th organ being the rest of organs (R5) and estimated the life span using an upper limit on lifetime entropy generated per unit mass of body, sM,life. The organ entropy stress expressed in terms of lifetime specific entropy generated per unit mass of body organs (kJ/(K kg of organ k)) was used to rank organs and heart ranked highest while liver ranked lowest. The present work includes the effects of (1) two additional organs: adipose tissue (AT) and skeletal muscles (SM) which are of importance to athletes; (2) proportions of nutrients oxidized which affects blood temperature and metabolic efficiencies; (3) conversion of the entropy stress from organ/cellular level to mitochondrial level; and (4) use these parameters as metabolism-based biomarkers for quantifying the biological aging process in reaching the limit of sM,life. Based on the 7-organ model and Elia constants for organ metabolic rates for a male of 84 kg steady mass and using basic and derived allometric constants of organs, the lifetime energy expenditure is estimated to be 2725 MJ/kg body mass while lifetime entropy generated is 6050 kJ/(K kg body mass) with contributions of 190; 1835.0; 610; 290; 700; 1470 and 95 kJ/K contributed by AT-BHKL-SM-R7 to 1 kg body mass over life time. The corresponding life time entropy stresses of organs are: 1.2; 60.5; 110.5; 110.5; 50.5; 3.5; 3.0 MJ/K per kg organ mass. Thus, among vital organs highest stress is for heart and kidney and lowest stress is for liver. The 5-organ model (BHKL and R5) also shows similar ranking. Based on mitochondrial volume and 5-organ model, the entropy stresses of organs expressed in kJ/K per cm3 of Mito volume are: 12,670; 5465; 2855; 4730 kJ/cm3 of Mito for BHKL indicating brain to be highly stressed and liver to be least stressed. Thus, the organ entropy stress ranking based on unit volume of mitochondria within an organ (kJ/(K cm3 of Mito of organ k)) differs from entropy stress based on unit mass of organ. Based on metabolic loading, the brains of athletes already under extreme mitochondrial stress and facing reduced metabolic efficiency under concussion are subjected to more increased stress. In the absence of non-intrusive measurements for estimating organ-based metabolic rates which can serve as metabolism-based biomarkers for biological aging (BA) of whole body, alternate methods are suggested for estimating the biological aging rate.

 Articles related

Francesco Ravaioli, Maria G. Bacalini, Claudio Franceschi and Paolo Garagnani    

Aging is a complex multi-layered phenomenon. The study of aging in humans is based on the use of biological material from hard-to-gather tissues and highly specific cohorts. The introduction of cell reprogramming techniques posed promising features for m... see more

Revista: Genes