ARTICLE
TITLE

Protein Profiles Reveal Diverse Responsive Signaling Pathways in Kernels of Two Maize Inbred Lines with Contrasting Drought Sensitivity

SUMMARY

Drought stress is a major factor that contributes to disease susceptibility and yield loss in agricultural crops. To identify drought responsive proteins and explore metabolic pathways involved in maize tolerance to drought stress, two maize lines (B73 and Lo964) with contrasting drought sensitivity were examined. The treatments of drought and well water were applied at 14 days after pollination (DAP), and protein profiles were investigated in developing kernels (35 DAP) using iTRAQ (isobaric tags for relative and absolute quantitation). Proteomic analysis showed that 70 and 36 proteins were significantly altered in their expression under drought treatments in B73 and Lo964, respectively. The numbers and levels of differentially expressed proteins were generally higher in the sensitive genotype, B73, implying an increased sensitivity to drought given the function of the observed differentially expressed proteins, such as redox homeostasis, cell rescue/defense, hormone regulation and protein biosynthesis and degradation. Lo964 possessed a more stable status with fewer differentially expressed proteins. However, B73 seems to rapidly initiate signaling pathways in response to drought through adjusting diverse defense pathways. These changes in protein expression allow for the production of a drought stress-responsive network in maize kernels.

 Articles related

Octavio Manuel Palacios Gimenez,Vanessa Bellini Bardella,Bernardo Lemos,Diogo Cavalcanti Cabral de Mello    

Satellite DNA (satDNA) is a class of non-coding repetitive DNA abundant in most eukaryotic genomes. Mostly satDNAs constitute clustered arrays of tandemly repeated sequences located in the gene-poor heterochromatin of centromeres and telomeres. Moreover ... see more


Bin Bai, Jun Wu, Wen-Tao Sheng, Bo Zhou, Li-Jie Zhou, Wen Zhuang, Dong-Ping Yao and Qi-Yun Deng    

Rice is highly sensitive to cold stress during reproductive developmental stages, and little is known about the mechanisms of cold responses in rice anther. Using the HiSeq™ 2000 sequencing platform, the anther transcriptome of photo thermo sensitive gen... see more


Yi-Hsin Tseng, Yung-Hsin Yeh, Wei-Jan Chen and Kwang-Huei Lin    

Betatrophin, also known as TD26/RIFL/lipasin/ANGPTL8/C19orf80, is a novel protein predominantly expressed in human liver. To date, several betatrophin orthologs have been identified in mammals. Increasing evidence has revealed an association between beta... see more


Shinnosuke Ishikawa, José Barrero, Fuminori Takahashi, Scott Peck, Frank Gubler, Kazuo Shinozaki and Taishi Umezawa    

Dormancy is the mechanism that allows seeds to become temporally quiescent in order to select the right time and place to germinate. Like in other species, in barley, grain dormancy is gradually reduced during after-ripening. Phosphosignaling networks in... see more


Viola Volpato, Badr Alshomrani and Gianluca Pollastri    

Intrinsically-disordered regions lack a well-defined 3D structure, but play key roles in determining the function of many proteins. Although predictors of disorder have been shown to achieve relatively high rates of correct classification of these segmen... see more